### **Education and Awareness**

**Energy Workstream High-Level Designs** 

Non-Quick Start Generators

December 3, 2018



#### Disclaimer

This presentation is provided for information purposes only. The presentation does not constitute, nor should it be construed to constitute, legal advice or a guarantee, representation or warranty on behalf of the IESO. In the event of any conflict or inconsistency between the information contained in this presentation and the Market Rules, the Market Manuals, any IESO contract or any applicable legislation or regulation, the provisions of the Market Rules, Market Manuals, contract, legislation or regulation, as applicable, govern.



## Purpose and Approach

- This exercise will provide education and practical understanding of the key aspects of the Energy High-Level Designs (HLDs)
- Focus of today will be on design decisions that are most impactful to Non-Quick Start Generators (NQS)
- The presentation is split into three sections:
  - A. Summary of the relevant core design concepts
  - B. High-level walk through of operational activities to compare new design features to the current design
  - C. Settlement scenarios relevant to the resource group



# SECTION A: DESIGN CONCEPTS



### Introduction

- This section will begin with a recap of the rationale for Market Renewal, and summarize the key initiatives in the energy work stream
- The presentation will then outline the key design concepts most relevant for NQS including:
  - 1. Locational Pricing
  - 2. Market Power Mitigation
  - 3. Day-Ahead Market Participation
  - 4. Pre-Dispatch Process



#### Market Renewal Overview

- Ambitious set of initiatives that amounts to a fundamental redesign of Ontario's electricity markets and prepares us for future change
- Current design has served Ontario well but demands of a modern grid evolving rapidly
- **Reforms are required** to allow the IESO to continue to manage the grid reliably & cost effectively



#### Market Renewal Activities



**ENERGY** work stream

- Single Schedule Market (SSM)
- Day-Ahead Market (DAM)
- Real-Time Unit Commitment (ERUC)

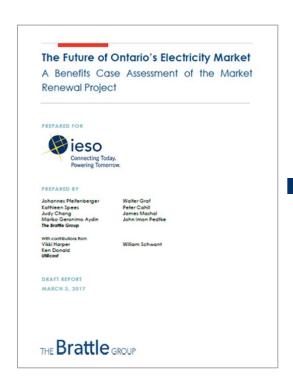


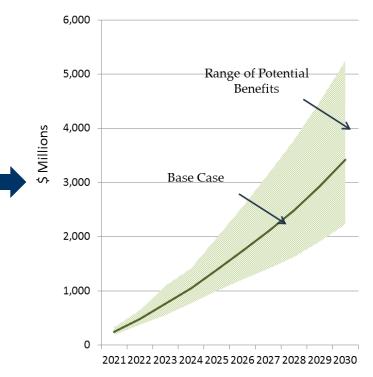
CAPACITY work stream

• Incremental Capacity Auction (ICA)



Near-term Projects


**Market Renewal** 

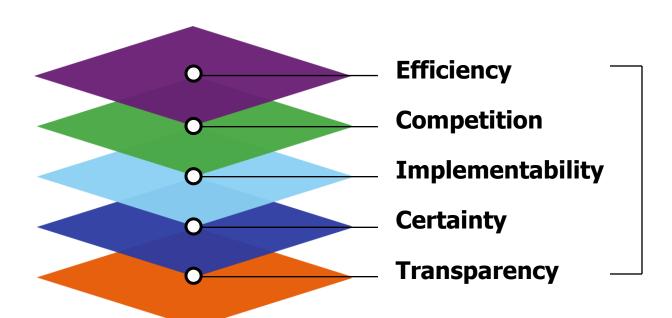

**Future Projects** 



## Developing a Benefits Case

The IESO spent eight months analyzing the potential benefits of market renewal together with stakeholders under a range of future scenarios.

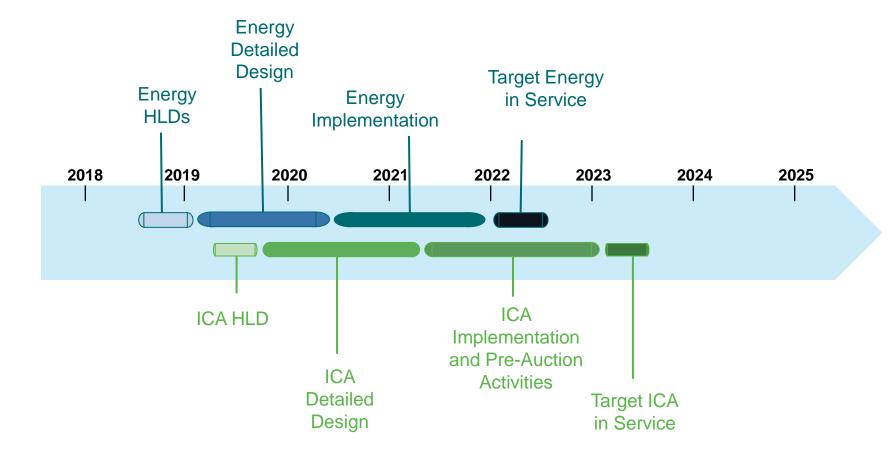





Market Renewal is expected to deliver an average of \$3.4 billion in efficiency savings (most of which will flow to Ontario's consumers) over a 10-year period with a potential to reach as high as \$5.2 billion.



## Market Renewal Principles


A more efficient, stable marketplace with competitive and transparent mechanisms that meet system and participant needs at lowest cost



Market renewal must meet Ontario's reliability needs and work within public policy parameters

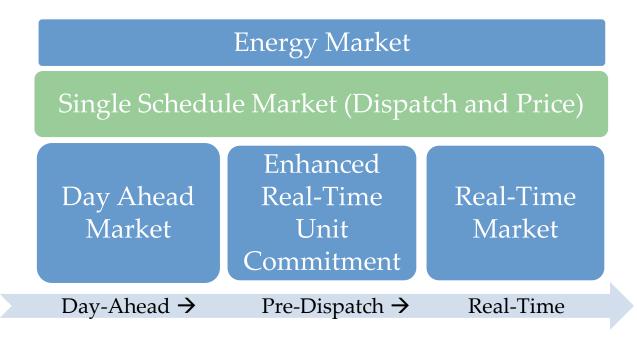


### Market Renewal Timeline



<sup>\*</sup>This graphic is for illustrative purposes only and dates are subject to change




#### Market Renewal and Contracts

- Market Renewal is focused on improving the efficiency of Ontario's electricity markets, consistent with contract provisions and fairness to all contract counterparties, the IESO is not targeting to extract value from contracts
- The IESO will continuously work with our contract counterparties to understand contract implications, and address these changes throughout the design of the MRP



## Single Schedule Market - The Big Picture

- This initiative will replace Ontario's two schedule market with a single schedule market (SSM) that better aligns price with dispatch
- Improving the energy price signal in Ontario is a foundational change that is required to address existing challenges and prepare for the market of the future





## Ontario's Current Market Design

Ontario's current market uses two different schedules (sets of calculations) to determine price and dispatch in Ontario

#### Schedule 1

- Determines a provincewide uniform price for energy (MCP)
- Ignores certain physical limitations of the system
- Used to settle the market financially

When there are differences between the two schedules, out-of-market CMSC\* payments must be made to maintain reliability

These payments have led to inefficient behaviour and costly outcomes for consumers

#### Schedule 2

- Calculates "shadow" prices at each node
- Considers all relevant physical limitations of the system
- Prices used to dispatch resources

CMSC = Congestion Management Settlement Credit



## Single Schedule Market

Price & Dispatch aligned

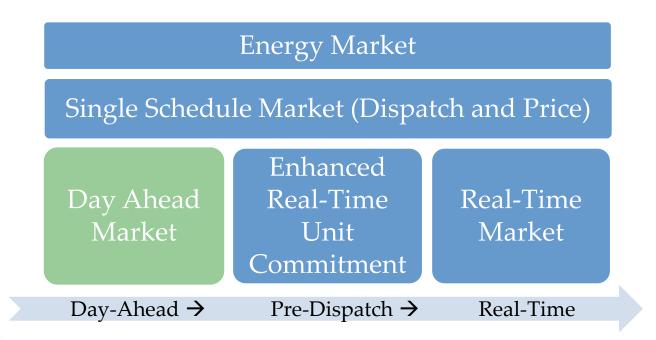
Reduced out-of-market payments and other complexity



These
outcomes will
reduce the
production
cost of
electricity

Improved price signals increase the efficiency of operational and investment decisions

Enabled by Single Schedule Market




## Single Schedule Market – Key Takeaways

- SSM will introduce locational prices for energy and operating reserve that will more accurately reflect the value of those services, enabling more efficient operational and investment decisions
- Unlocks other market changes including the day-ahead market
- Not seeking to extract value from contracted resources
- Allows resources that can provide the most value to the system to benefit from accurate locational prices

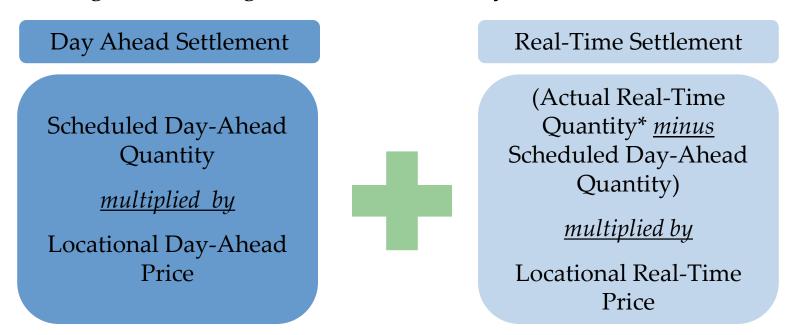
## Day-Ahead Market: The Big Picture

- A day-ahead market will provide financially binding day-ahead schedules
- It is enabled by the single schedule market design and will operate prior to pre-dispatch and real-time





## Why a Day Ahead Market?


| Current Day-Ahead Commitment<br>Process (DACP)                                                                                      | Day-Ahead Market (DAM)                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Participants submit day-ahead bids and<br/>offers primarily to declare availability in<br/>real-time.</li> </ul>           | <ul> <li>Participants submit day-ahead bids and<br/>offers to compete with other for a day-<br/>ahead price.</li> </ul>          |
| <ul> <li>Day-ahead bids and offers may be less<br/>efficient because they are not competing<br/>for a price</li> </ul>              | <ul> <li>Day-ahead bids and offers are more<br/>efficient because they are competitive</li> </ul>                                |
| <ul> <li>Exports can participate but are not incentivized to do so</li> </ul>                                                       | <ul> <li>Exports have incentive to participate in the DAM</li> </ul>                                                             |
| <ul> <li>Resources are scheduled to meet Ontario<br/>demand, providing a rough<br/>approximation of tomorrow's operation</li> </ul> | <ul> <li>Resources are scheduled to meet total<br/>Market demand, providing a better view<br/>of tomorrow's operation</li> </ul> |

A day-ahead price signal incentivizes more efficient participation from all resources



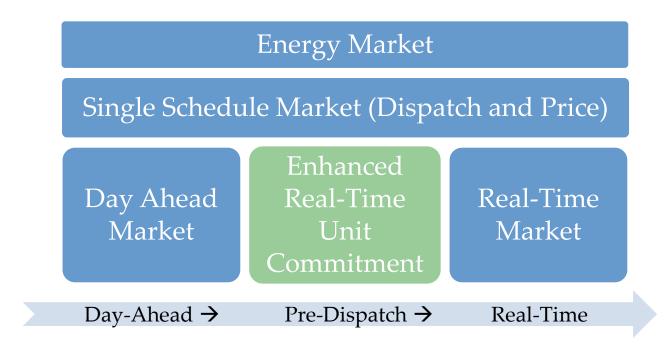
#### How it Works

 DAM produces hourly schedules and prices that are financially binding, introducing a 'two-settlement' system



 Real-time settlement only used for balancing deviations from dayahead schedules




## Day-Ahead Market – Key Takeaways

- Financially binding DAM will improve participation in day-ahead scheduling, helping to ensure reliability while efficiently scheduling resources
- Expect increased commitment of NQS resources to occur in day-ahead timeframe, increasing financial and operational certainty for these suppliers
- Improved alignment with gas nomination window can help to manage supplier risk
- Note: These topics are discussed in greater detail in the key concepts section of the presentation



## ERUC: The Big Picture

The initiative will replace the existing pre-dispatch and real-time generation cost guarantee (RT-GCG) program





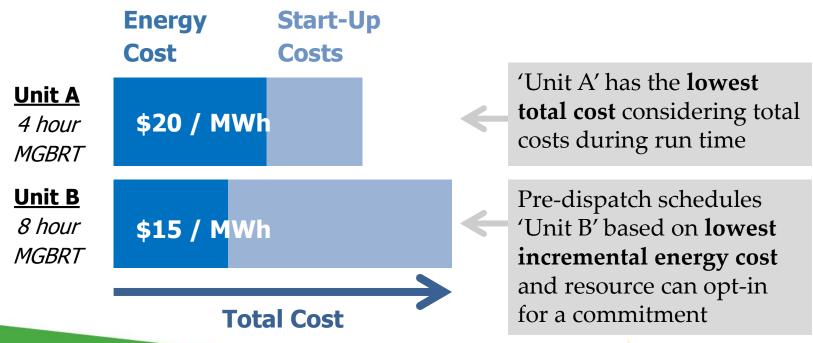
## Summary of Issues with Current Real-time Unit Commitment Process

#### Incomplete Picture

Not all costs are considered in optimization process

## Lack of Competition

After-the-fact cost submission means no competition between generators on those costs


#### Limited lookahead

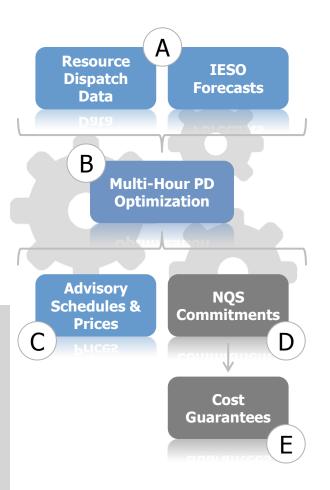
Optimizes commitments based on a single hour



## **Inefficient Commitment Example**

Today's Pre-Dispatch (PD) optimization can cause inefficient commitments by scheduling non-quick (NQS) start resources without considering all unit costs and operating restrictions over multiple hours






## ERUC Re-Design of Pre-Dispatch

#### **ERUC** will redesign the PD engine to:

- A. Consider <u>all</u> resource dispatch data and the latest forecasts
- B. Optimize PD scheduling **over a "look-ahead period"(LAP)** hourly
- C. Provide **advisory schedules & prices** for all participating resources
- D. Send **operational commitment** for eligible lowest cost NQS resources
- E. Provide **cost guarantee** payments for eligible committed NQS resources to promote reliability

NQS Resources





# Enhanced Real-Time Commitment – Key Takeaways

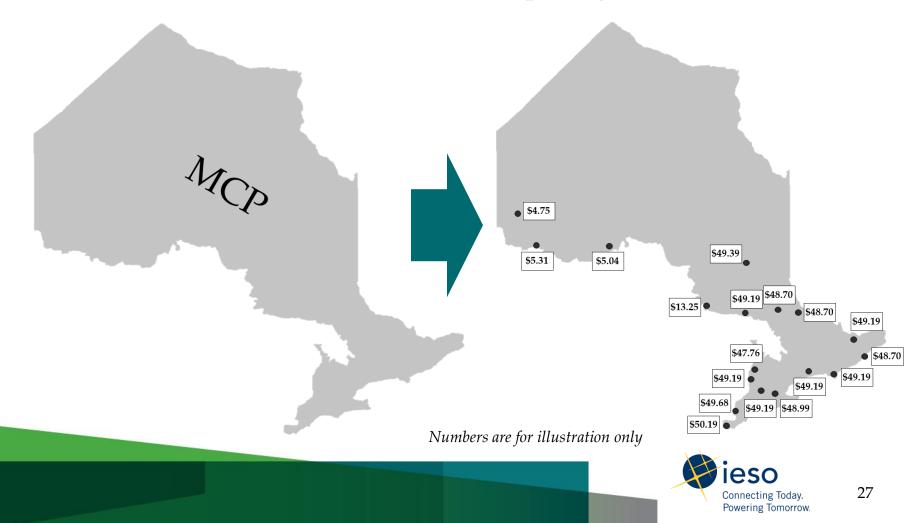
- ERUC project is replacing today's pre-dispatch process and the RT-GCG program
- Improved pre-dispatch process will help to ensure resources will be scheduled when they are among the lowest cost options
- Financial guarantee will remain to ensure NQS resources do not operate at a loss and IESO can maintain reliability
- Increased alignment with day-ahead scheduling
- Note: These topics are discussed in greater detail in the key concepts section of the presentation



## **KEY DESIGN CONCEPTS**



#### Design Concept 1 – Locational Pricing


### Context

- Locational Marginal Pricing (LMP) is a foundational feature of Market Renewal
- Locational prices will:
  - ✓ Align price with dispatch
  - ✓ Significantly reduce out-of-market payments
  - ✓ Unlock broader market renewal benefits
  - ✓ Reduce the cost of energy for Ontario consumers

#### Design Concept 1 – Locational Pricing

## Design for Suppliers

Generators will move from MCP to nodal pricing:



#### Design Concept 1 – Locational Pricing

## **Pricing Summary**

| Participant               | Customer Class                          | Current settlement price:                 | SSM<br>settlement<br>price: |
|---------------------------|-----------------------------------------|-------------------------------------------|-----------------------------|
| IESO-<br>Settled<br>Loads | Dispatchable Loads                      | Uniform Market<br>Clearing Price<br>(MCP) | Nodal                       |
|                           | Non-dispatchable Loads (including LDCs) | НОЕР                                      | Zonal with<br>Nodal option  |
| LDC-Settled<br>Loads      | Large Customers (>250,000KWh)           | НОЕР                                      | TPD by OEP                  |
|                           | Small Customers (<250,000 KWh)          | RPP                                       | TBD by OEB                  |
| Suppliers                 | N/A                                     | Uniform Market<br>Clearing Price<br>(MCP) | Nodal                       |



### Context

- Prices impacted by market power do not reflect marginal costs and result in inefficient outcomes that drive up costs to consumers
- Market power can be exercised through:

#### **Economic Withholding**

To offer a portion of or all available capacity at a higher than competitive price

#### Physical Withholding

To not offer a portion or all available capacity into the market



## **Application**

- Market power mitigation (MPM) will be triggered where the IESO determines competition to be restricted
- MPM will apply to energy, operating reserve and certain operational parameters
- MPM will be applied through conduct and impact tests:
  - Conduct test: defines the boundaries within which participants will not be mitigated. The test will be based on reference levels which will provide proxies of competitive offers
  - Impact test: defines how much of an impact that offers in excess of the conduct threshold can have on market prices before mitigation is applied

## **Summary for Suppliers**

|                                     | Economic Withholding                                                           | Physical Withholding                                         |  |
|-------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Tests                               | Conduct and impact tests                                                       | Conduct and impact tests                                     |  |
|                                     | Conduct test: Are offers/operational parameters beyond competitive thresholds? | Conduct test: Did resource not offer all available capacity? |  |
|                                     | Impact test: Will settlement costs be beyond set threshold?                    | Impact test: Were settlement costs beyond set threshold?     |  |
| Timing                              | Before DAM, PD and RT schedules are produced                                   | After energy delivery                                        |  |
| Test standard                       | Both conduct and impact tests failed                                           |                                                              |  |
| IESO<br>Response to<br>Failed Tests | Offers adjusted to reference levels before scheduling                          | Settlement Adjustment                                        |  |



## **NQS** Considerations

- Start-up offers, speed-no-load offers and nonprice parameters (e.g., MLP, MGBRT) will also be tested
- Uplift impact test will be applied after the fact to see if uplift payments were impacted
- Resources that fail the conduct and uplift impact tests will be mitigated

#### Design Concept 3 - Day-Ahead Market Participation

### Context

#### Participation

- Offer Obligation

## Execution and Timing

- Submissions
- Operational commitments



#### Design Concept 3 - Day-Ahead Market Participation

## Participation

#### Participation

- Offer Obligation

✓ The DAM in itself will not have a participation obligation as financially binding schedules will incentivize greater and more efficient participation from all resources

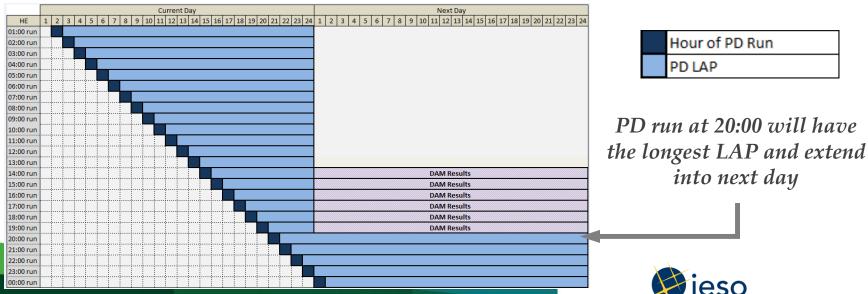
✓ Expect majority of NQS commitments in day-ahead timeframe

#### Design Concept 3 - Day-Ahead Market Participation

## **Execution and Timing**

## Execution and Timing

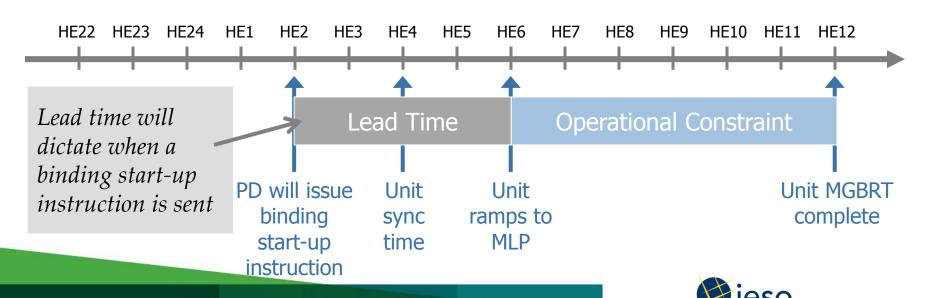
- Submissions
- Operational commitments


✓ DAM will execute between 10:00 EPT and 13:30 EPT to align with gas nominations

✓ Operational constraints associated with DAM financially binding schedules for NQS will be respected in PD and RT

#### Design Concept 4 – Pre-Dispatch Process

## **Pre-Dispatch Optimization**


- Optimization will consider a broader data set:
  - Hourly dispatch data (e.g., regular or 3-part offers as applicable)
  - Daily generator data (e.g., MLP, MGBRT, lead time curve data)
- Look-ahead period (LAP) will be **extended and more comprehensive**:
  - Hourly PD runs will evaluate all resource and forecast data for the LAP
  - Optimized LAP will be between 4 to 27 hours depending on run start time



#### Design Concept 4 – Pre-Dispatch Process

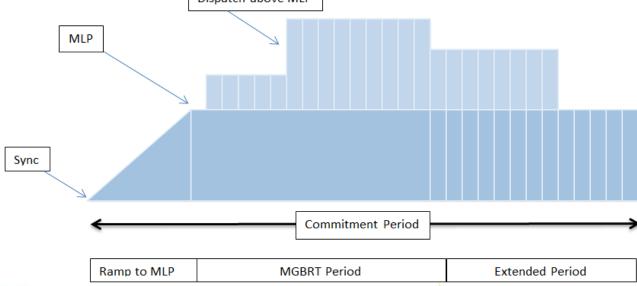
#### Pre-Dispatch Schedules

- For <u>all</u> resources, improved PD advisory schedules will be provided hourly and better indicate expected RT economic quantities
- For <u>NQS</u> resources, PD schedules will automatically:
  - Reflect operational constraints
  - Be advisory until PD determines that the resource <u>must</u> be committed based on "lead time" data submissions



Powering Tomorrow.

#### Design Concept 4 – Pre-Dispatch Process


#### **NQS** Resource Commitment

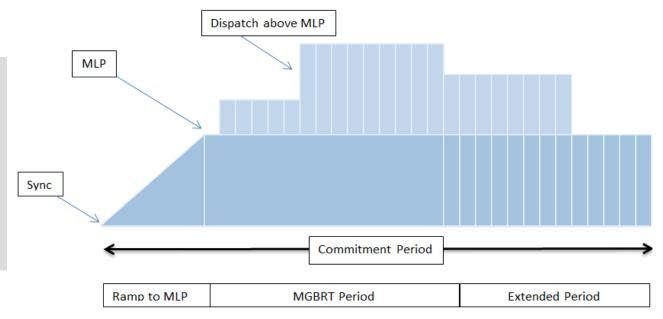
The PD optimization will create and update NQS commitments by:

- **1. Issuing a notification with sync information** i.e., replacing participant calling the control room to "invoke" commitment program
- **2. Applying an operational constraint for MLP over MGBRT** i.e., replacing manual control room operator constraint application
- 3. Extending commitment as needed hourly if the resource is still economic after MGBRT

  Dispatch above MLP

PD will indicate when to begin to ramp down & de-sync by no longer providing extensions, and resource will be dispatched below MLP



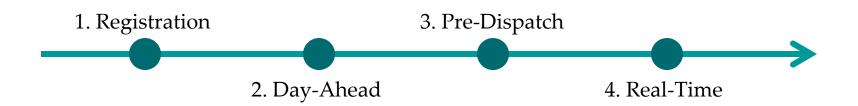



#### Design Concept 4 – Pre-Dispatch Process

#### NQS Resource Cost Guarantee

The pre-dispatch cost guarantee calculation will consider all energy market and operating reserve market revenues over the commitment period for the total delivered quantity, net of cost incurred

All Commitment
Period hours will be
eligible for payments
to recover as-offered 3part energy and OR
costs net of all market
revenues




# SECTION B: OPERATIONAL WALK THROUGH



#### Introduction

- The section will compare the most relevant new design features to the current design
- This will be illustrated chronologically through four stages:



• The section will start with a recap of the current design before then moving on to describe the new design



# 1. Registration – Current Design

| Registration                                      | Day-Ahead<br>Commitment<br>Process (DACP) | Pre-Dispatch (PD) | Real-Time (RT) |
|---------------------------------------------------|-------------------------------------------|-------------------|----------------|
| Register pseudo unit or resource operational data |                                           |                   |                |
|                                                   |                                           |                   |                |

### 2. Day-Ahead – Current Design

Day-Ahead Registration Commitment Pre-Dispatch (PD) Real-Time (RT) Process (DACP) Register pseudo Submit / update unit or resource operational data operational data and three part offers DACP offer requirement to participate in RT (*i.e.*, *ADE*) Receive advisory schedule, including operational commitments for length of advisory schedule

#### 3. Pre-Dispatch – Current Design

Registration

Day-Ahead Commitment Process (DACP)

Pre-Dispatch (PD)

Real-Time (RT)

Register pseudo unit or resource operational data

Submit / update operational data and three part offers

DACP offer requirement to participate in RT (i.e., ADE)

Receive advisory
schedule,
including
operational
commitments for
length of advisory
schedule

Update incremental energy offers

Receive PD schedule (PD based on physical units)

Call to "invoke"
the RT generation
cost guarantee
program and
receive operational
commitment for
MGBRT



### 4. Real-Time – Current Design

Registration

Day-Ahead Commitment Process (DACP)

Pre-Dispatch (PD)

Real-Time (RT)

Register pseudo unit or resource operational data

Submit / update operational data and three part offers

DACP offer requirement to participate in RT (i.e., ADE)

Receive advisory
schedule,
including
operational
commitments for
length of advisory
schedule

Update incremental energy offers

Receive PD schedule (PD based on physical units)

Call to "invoke"
the RT generation
cost guarantee
program and
receive operational
commitment for
MGBRT

Generate as per dispatch instructions

Settlement based on RT generation, uniform market clearing price (MCP) and, if eligible, RT-GCG payment



# 1. Registration – Market Renewal Design

| Registration                                                                                                                                                | Day-Ahead<br>Market (DAM) | Pre-Dispatch (PD) | Real-Time (RT) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|----------------|
| Register pseudo unit or resource operational data, including lead time  Operational data subject to additional validation for market power mitigation (MPM) |                           |                   | ieso           |

# 2. Day-Ahead – Market Renewal Design

Day-Ahead Pre-Dispatch (PD) Registration Real-Time (RT) Market (DAM) Register pseudo *No DAM offer* unit or resource requirement to operational data, participate in RT including lead time To participate in DAM: submit / Operational data update op. data, subject to inc. lead time & 3 additional part offers validation for market power MPM checks mitigation (MPM) Receive financially binding schedule, including MGBRT op. commitments DAM settlement based on financially binding schedule and

nodal price

## 3. Pre-Dispatch – Market Renewal Design

Registration

Day-Ahead Market (DAM)

Pre-Dispatch (PD)

Real-Time (RT)

Register pseudo unit or resource operational data, including lead time

Operational data subject to additional validation for market power mitigation (MPM) No DAM offer requirement to participate in RT

To participate in DAM: submit / update op. data, inc. lead time & 3 part offers

MPM checks

Receive financially binding schedule, including MGBRT op. commitments

DAM settlement based on financially binding schedule and nodal price

Submit/update op. data inc. lead time and three part offers

#### MPM checks

DAM operational commitments up to MLP over MGBRT will be passed through to PD

Receive PD schedule, including operational commitments (PD based on pseudounits)



### 4. Real-Time – Market Renewal Design

Registration

Day-Ahead Market (DAM)

Pre-Dispatch (PD)

Real-Time (RT)

Register pseudo unit or resource operational data, including lead time

Operational data subject to additional validation for market power mitigation (MPM) No DAM offer requirement to participate in RT

To participate in DAM: submit / update op. data, inc. lead time & 3 part offers

MPM checks

Receive financially binding schedule, including MGBRT op. commitments

DAM settlement based on financially binding schedule and nodal price

Submit/update op. data inc. lead time and three part offers

#### MPM checks

DAM operational commitments up to MLP over MGBRT will be passed through to PD

Receive PD schedule, including operational commitments (PD based on pseudounits) Generate as per dispatch instructions

RT settlement based on real-time generation, nodal price and, if eligible, cost guarantee



# SECTION C: SETTLEMENT SCENARIOS



#### Introduction

- This section will provide a series of simplified examples to illustrate the high-level settlement process for dispatchable generators
- Three scenarios will be presented:
  - 1. Real-Time energy production **equal to** Day-Ahead schedule
  - 2. Real-Time energy production **greater than** Day-Ahead schedule
  - 3. Real-Time energy production **less than** Day-Ahead schedule



#### Settlement for Suppliers

Day-Ahead

Real-Time (balancing)

Scheduled Day-Ahead Quantity

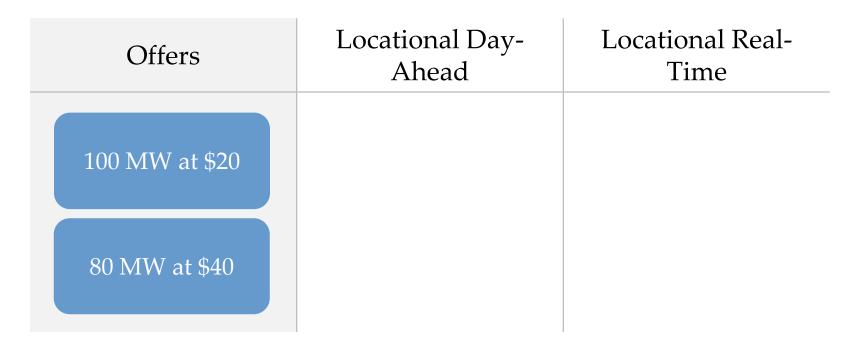
multiplied by

Locational Day-Ahead Price

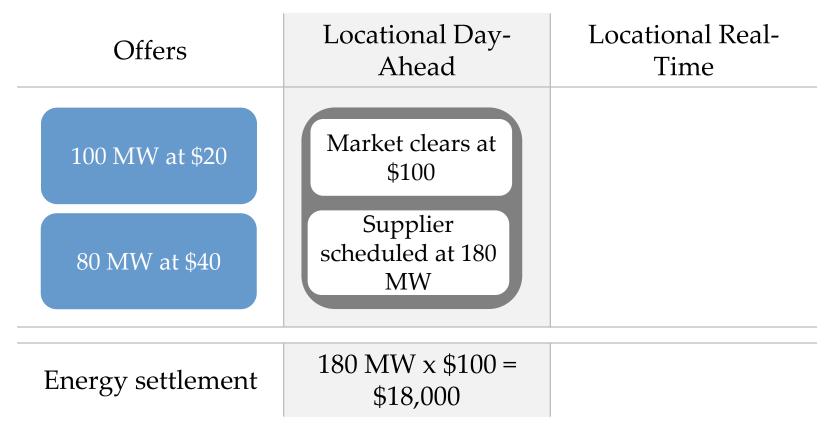
Suppliers are **paid for DA scheduled injections** 



Locational Real-Time Price

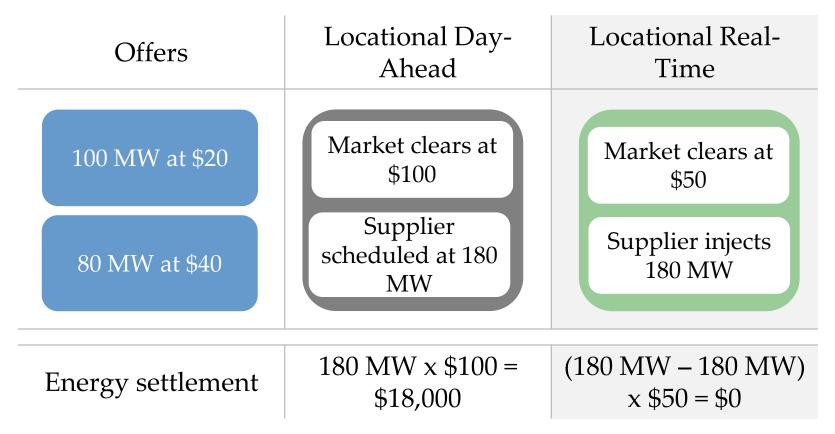

Suppliers are **paid for incremental RT** injections
but **pay for undelivered DA scheduled injections** 




#### Scenario 1:

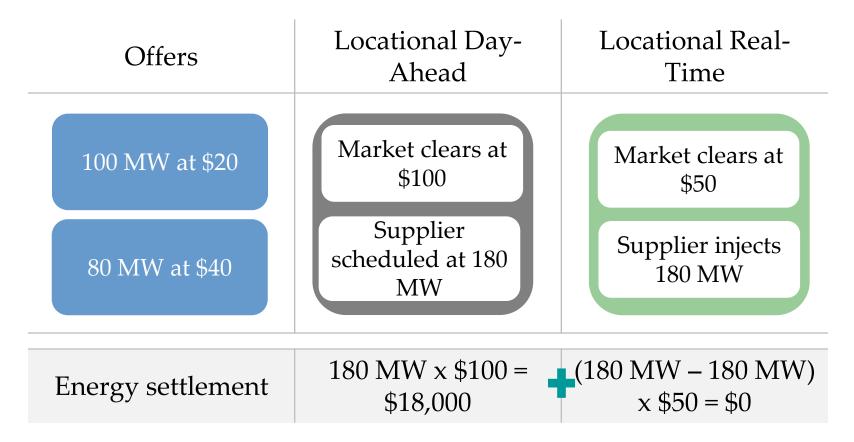
# REAL-TIME PRODUCTION AND DAY-AHEAD SCHEDULE EQUAL






The supplier makes two offers, one offer to show that it is willing to inject 100 MW as long as the price is greater than or equal to \$20, and another to indicate it will inject an additional 80 MW if the price is greater than or equal to \$40




The locational day-ahead market clears at \$100 and the supplier receives a financially binding schedule for 180 MW...





The supplier's real-time injection is the same as its day-ahead schedule so no balancing settlement applies...

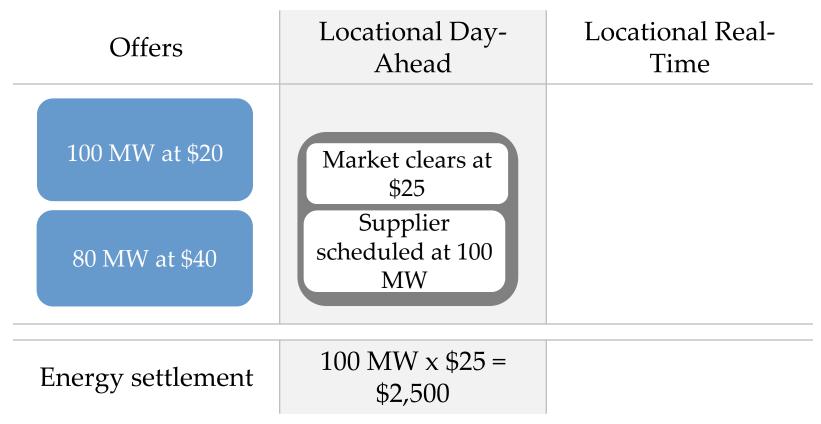




The supplier is paid \$18,000 for injecting 180 MW

# S1: RT and DAM injection equal – Summary

- In this scenario, the supplier placed two offers in the DAM which were both accepted at the locational market clearing price
- The participant's real-time injection matched it's dayahead schedule, and as a result, the supplier was not exposed to the fall in real-time prices
- Overall, this scenario demonstrates how participants can increase financial certainty when they offer into DAM their expected real-time capability


#### Scenario 2:

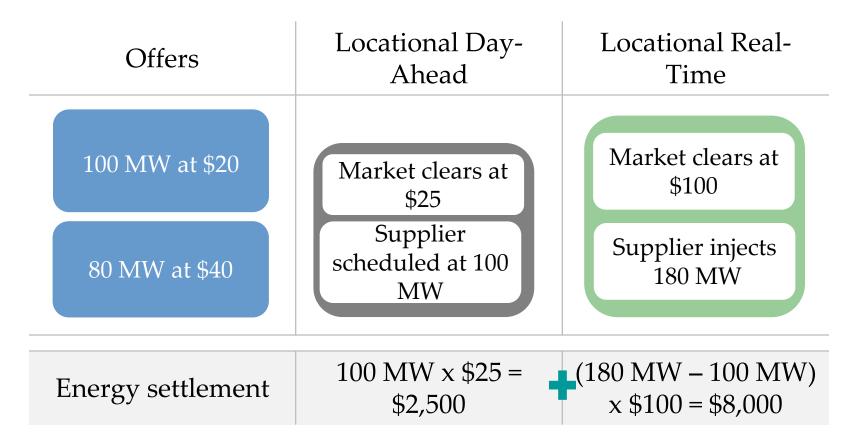
# REAL-TIME PRODUCTION GREATER THAN DAY-AHEAD SCHEDULE




| Offers         | Locational Day-<br>Ahead | Locational Real-<br>Time |
|----------------|--------------------------|--------------------------|
| 100 MW at \$20 |                          |                          |
| 80 MW at \$40  |                          |                          |

The supplier makes two offers, one offer to show that it is willing to inject 100 MW as long as the price is greater than or equal to \$20, and another to indicate it will inject an additional 80 MW if the price is greater than or equal to \$40




The locational day-ahead market clears at \$25 and the supplier receives a financially binding schedule for 100 MW...



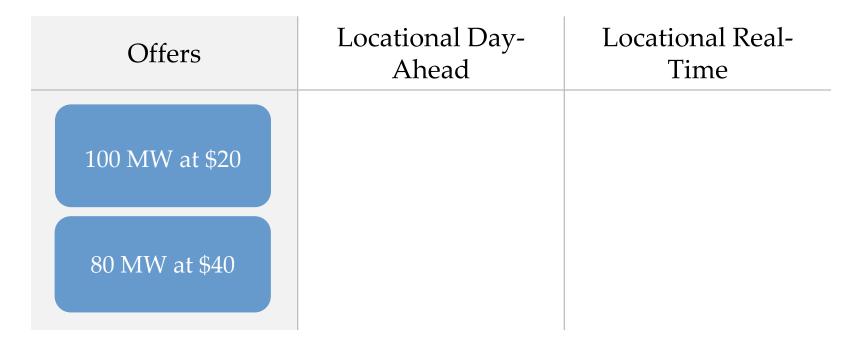


The locational real-time market clears at a higher price than the locational day-ahead market and the participant injects an additional 80 MW...

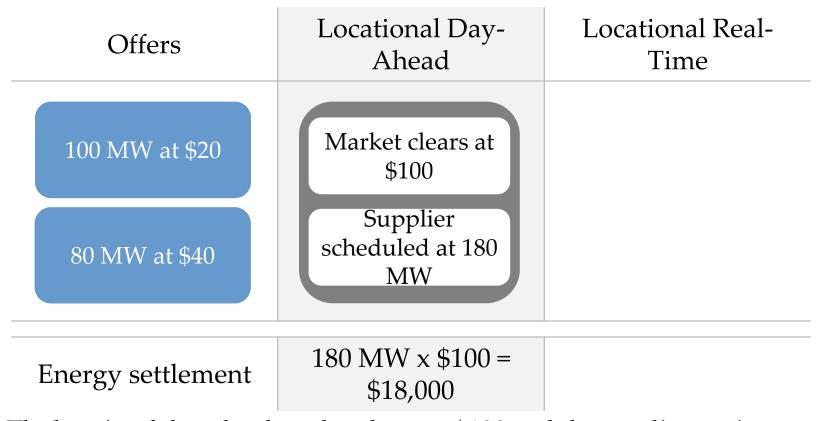




The supplier is paid \$10,500 for injecting 180 MW

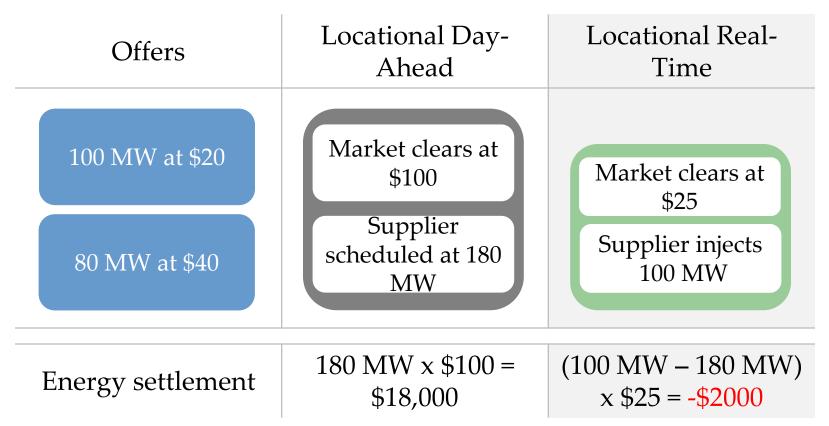

# S2: RT injection greater than DAM – Summary

- In this scenario, the supplier placed two offers in the DAM, of which only one was accepted given the locational day-ahead market clearing price
- In real-time, the participant increased injection from the DAM schedule due to higher prices in real-time
- Overall, the scenario illustrates how the supplier had certainty day-ahead on the price of its first 100 MW of supply and had the flexibility to capture higher real-time prices for the remaining 80 MW

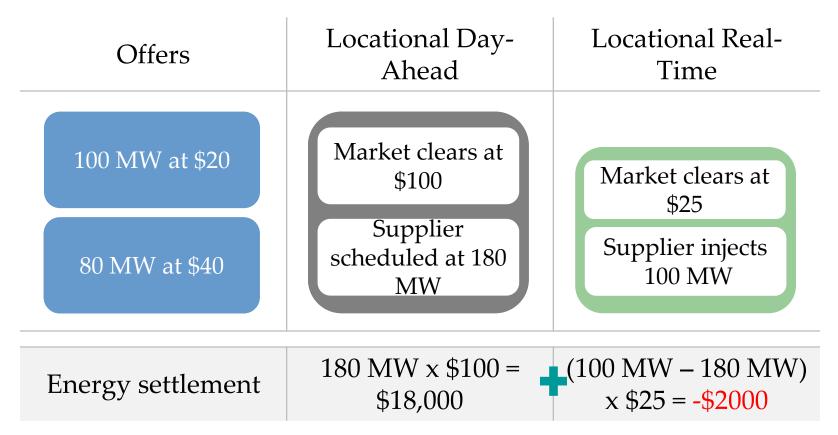

#### Scenario 3:

# REAL-TIME PRODUCTION LESS THAN DAY-AHEAD SCHEDULE






The supplier makes two offers, one offer to show that it is willing to inject 100 MW as long as the price is greater than or equal to \$20, and another to indicate it will inject an additional 80 MW if the price is greater than or equal to \$40




The locational day-ahead market clears at \$100 and the supplier receives a financially binding schedule for 180 MW...





The locational real-time market price clears lower than the locational day-ahead price and the supplier injects 80 MW less than its financially binding day-ahead schedule...



The supplier pays \$2,000 to buy back 80 MW of its day-ahead schedule and gets a net payment \$16,000 for injecting 100 MW



### S3: RT injection less than DAM – Summary

- In this scenario, the supplier placed two offers, which were both accepted given the locational day-ahead market clearing price
- The locational clearing price then dropped in the realtime market and the market participant reduced their injection and bought back the difference
- This scenario illustrates how a participant gains financial certainty through the locational DAM by offering in their expected real-time capability. In this case, the supplier profited from offering into the locational DAM even though the locational real-time market required less supply

# **WRAP-UP**



#### Summary

- Market Renewal will help to more efficiently deliver a reliable supply of energy to Ontarians
- Existing contracts and regulation will help to ease the transition to a new market design for suppliers
- Best practice and stakeholder feedback are being leveraged to develop a market design that works for Ontario suppliers
  - E.g., A financially binding DAM will provide increased certainty for suppliers and better alignment with the gas nomination window
- The single schedule market will provide a more accurate locational signal for the value of energy and OR in Ontario allowing the resources that are best able to meet system needs to benefit
- DAM and ERUC will help to ensure that resources will be scheduled when they are the lowest cost option to meet system needs



#### How To Get Involved

- Review and provide feedback on HLDs
  - SSM HLD is available at: <a href="http://www.ieso.ca/Sector-Participants/Market-Renewal/Single-Schedule-Market-High-Level-Design">http://www.ieso.ca/Sector-Participants/Market-Renewal/Single-Schedule-Market-High-Level-Design</a>
  - ERUC and DAM HLDs will be published before year end
- Participate in detailed design engagement
  - See engagement plan for further details: <a href="http://www.ieso.ca/-/media/Files/IESO/Document-Library/engage/mrp/mrp-energy-dd-engagement-plan.pdf?la=en">http://www.ieso.ca/-/media/Files/IESO/Document-Library/engage/mrp/mrp-energy-dd-engagement-plan.pdf?la=en</a>
- Engage with appropriate industry associations to follow MRP progress
- Subscribe to IESO Bulletin to receive periodic updates on MRP



### Further Reading

- For further information on the design, stakeholders are invited to review materials online at:
  - Single Schedule Market: <a href="http://www.ieso.ca/Sector-Participants/Market-Renewal/Market-Renewal-Single-Schedule-Market-Market-Market-Market-Market-Market-Renewal-Single-Schedule-Market-Market-Renewal-Single-Schedule-Market-Market-Market-Market-Renewal-Single-Schedule-Market-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Single-Schedule-Schedule-Schedule-Market-Renewal-Single-Schedule-Market-Renewal-Schedule-Market-Renewal-Schedule-Schedule-Sch
  - Day-Ahead Market: <a href="http://www.ieso.ca/Sector-Participants/Market-Renewal/Market-Renewal-Day-Ahead-Market">http://www.ieso.ca/Sector-Participants/Market-Renewal/Market-Renewal-Day-Ahead-Market</a>
     Market
  - Enhanced Real-Time Commitment: <a href="http://www.ieso.ca/Sector-Participants/Market-Renewal/Market-Renewal-Enhanced-Real-Time-Unit-Commitment">http://www.ieso.ca/Sector-Participants/Market-Renewal/Market-Renewal-Enhanced-Real-Time-Unit-Commitment</a>