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Executive Summary 

1. Project Motivation and Goals 

1.1. Motivation 
Modern commercial greenhouses are high-energy facilities facing increasing pressure to balance 
productivity with sustainability. Among the most pressing challenges are the escalating energy 
demands for lighting and climate control. In fully-lit greenhouses, lighting alone can account for over 
90% of total electricity use. This issue is magnified in Ontario, where the greenhouse sector has been 

expanding rapidly to meet year-round food production demands in North America. With predictions of 
a 50% increase in greenhouse production and a corresponding 180% spike in electricity consumption 

over five years, the strain on the grid is already significant. 

Despite technological progress, many greenhouse operations remain hampered by outdated control 
systems. Most growers are forced to rely on rule-based setpoints and fragmented sensor data, which 

cannot be integrated or interpreted cohesively due to proprietary systems with limited or no APIs. 
The result is an underutilization of available data and an over-reliance on human intuition. 

At the same time, a generational shift is underway. As veteran growers retire and labor shortages 
persist, the sector risks losing crucial expertise. There is a clear need for intelligent, scalable tools 
that can preserve and replicate expert-level decision-making while improving overall operational 
efficiency. 

Artificial Intelligence (AI), specifically in the form of model-based reinforcement learning (MBRL), 
presents a compelling solution. Previous research led by Koidra’s founder, Dr. Kenenth Tran, 
demonstrated AI’s potential to outperform even top-tier Dutch growers in yield and profitability 
during the Autonomous Greenhouse Challenge, organized by Wageningen University & Research. 
However, this success had not been validated in a large-scale, production-grade commercial 
greenhouse. This project was motivated by the need to bridge that gap and bring cutting-edge AI 
control systems into real-world horticulture. 
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1.2. Project Goals 
The overarching goal of this project was to design, implement, and validate an AI-powered 

autonomous control system, hereafter coded as KoPilot, for a commercial greenhouse environment. 
KoPilot and its supporting software infrastructure would be specifically tested at Great Lakes 
Greenhouses (GLG), one of North America's largest cucumber growers. 

More specifically, the project set out to 

1. Develop a scalable, interoperable software and hardware infrastructure that could 

collect, clean, and analyze real-time sensor data from legacy systems (e.g. Hoogendoorn, 
Priva, Argus, etc.), regardless of vendor constraints. 

2. Create a grower-informed expert system that formalized the decision logic of top 

horticulturalists, enabling a baseline AI that could operate with expert-level consistency. 
3. Build and train a reinforcement learning-based autonomous agent that not only 

mimics but surpasses human control over time through continuous learning and feedback 
integration. 

4. Improve key performance metrics such as yield, energy efficiency, and operational 
reliability compared to the status quo of manual grower control. 

5. Demonstrate safe, real-world AI deployment in a high-stakes commercial greenhouse, 
with rigorous performance validation and safety mechanisms (manual override, 
recommendation mode, real-time monitoring). 

6. Evaluate the generalizability of the AI system to other crops, environments, and 

industrial domains, including its adaptability to Multi-Unit Residential Buildings (MURBs) and 

other high-energy infrastructures. 

This project was not about incremental improvement. It was a full-system redesign of how a 
greenhouse could be operated, replacing static rules with adaptive intelligence, and replacing manual 
control with scalable autonomy. The ultimate goal: create a blueprint for the next generation of 
energy-efficient and climate-smart agriculture, powered by AI. 
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2. Milestones Summary and Key Findings 

2.1. Milestone 1: Software Infrastructure 

Objective 

Establish the software foundation required for AI-based greenhouse control by enabling automated 

data collection, integration with legacy systems, and remote monitoring. 

Key Achievements 

1. Successfully built an end-to-end IoT data infrastructure capable of interacting with both 

modern sensors and legacy control systems like Hoogendoorn’s iSii. 
2. Developed a custom solution using Robotic Process Automation (RPA) and Optical Character 

Recognition (OCR) to interface with Hoogendoorn, which lacks a programmatic API. This was 
essential for enabling automated data extraction and control setpoint adjustments. 

3. Deployed an edge-computing-based IoT Hub for real-time data acquisition at 5-minute 
intervals. Data sources included: 

a. Hoogendoorn-linked devices 
b. Custom dataloggers (using a Revolution Pi) for new sensors 
c. Crop yield from an external database 

4. Built the Control Center (previously called Krop Manager), a web and mobile dashboard for 
real-time and historical monitoring of climate, crop, and operational metrics. 

Key Findings 

1. Some legacy systems, especially Hoogendoorn’s iSii, posed major interoperability challenges. 
These were successfully overcome through custom engineering, notably by building around 

UiPath and developing a proprietary OCR layer. 
2. Real-time visibility and safety settings in the Control Center enhanced grower confidence and 

set the stage for AI deployment. 
3. The IoT Suite (including the IoT Hub and the Control Center) developed in this milestone, and 

continuously improved over the years by Koidra, is now one of the most robust, scalable, and 

control-vendor-agnostic greenhouse data platforms globally. 

Lesson Learned 

1. Early assumptions about available APIs proved costly in terms of engineering effort. 
2. Data infrastructure and integration with other systems tend to be underrated in an AI-centric 

project. 
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2.2. Milestone 2: Greenhouse Infrastructure 

Objective 

Prepare the physical greenhouse environment for A/B testing and AI deployment by establishing 

parallel test zones and equipping them with modern lighting and sensors. 

Key Achievements 

1. Established two isolated compartments at GLG for side-by-side testing: one AI-controlled (AI 
Zone) and one grower-controlled (Baseline Zone). 

2. Installed new LED lighting, sensors, cameras, and environmental monitoring systems to 
enable precise measurement of outcomes. 

Key Findings 

1. Enabled a controlled environment to isolate and compare the effects of AI versus conventional 
growing practices. 

2. Although it doesn’t introduce innovations, its completion was critical in enabling the later 
milestones. 

2.3. Milestone 3: Expert System 

Objective 

Codify experts’ knowledge into an AI system that replicates optimal human decision-making as a 
baseline for future learning. 

Key Activities 

● Collaborated with expert growers and researchers from the Harrow Research Center (of 
Agriculture and Agri-Food Canada), to document and formalize decision rules. 

● Developed an expert system that mirrors experienced growers’ behavior for key 
environmental control decisions. 

● Ran a comparative trial on organic eggplants, growing in two separated zones, with both 

crops started on April 19 and ended on Oct 25, 2022. 
■ the Baseline zone: the climate was controlled by the on-site growers using the 

conventional practice 
■ the AI zone: the climate was controlled by the newly-developed Expert system 
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Key Findings 

1. The AI system improved yield by 28.5% compared to the Baseline zone, without additional 
energy input1. This validated its operational readiness for more advanced learning models. 

2. The data system, and especially the Hoogendoor’s climate computer integration, was able 

handle real-world conditions, including unpredictable data issues (e.g., missing sensors, 
GLG-imposed control limitations). 

3. Due to the site limitations at GLG at the time, lighting was controlled by the onsite staff, 
limiting the ability of the AI system to fully control both the climate and lighting decisions. 

Lessons Learned 

The AI system was initially designed under the assumption of full control over lighting, climate, and 

irrigation. In practice, only partial control was available, which led to early mismatches, such as 
climate plans being based on AI-generated lighting schedules that differed from grower-set lighting. 
The system was updated to detect external control inputs and adjust its strategy accordingly. Future 
AI designs must account for shared or limited control environments from the outset. 

2.4. Milestone 4: Autonomous Continuous Improvement 

Objective 

Enable the AI system to improve autonomously through reinforcement learning while maintaining 

alignment with grower expertise. 

Key Achievements 

● Deployed a physics-informed model-based reinforcement learning (MBRL) framework, 
combining domain knowledge with machine learning to optimize greenhouse control. 

● Initialized the system using imitation learning from the expert system, ensuring baseline 

performance was comparable to expert growers. 
● Developed a hierarchical control architecture with three tiers: 

○ Tactical: daily decisions based on crop registration and weather forecast 
○ Operational: 5-minute climate setpoint adjustments 

○ Real-time: local actuator response via Hoogendoorn 

1 This milestone and trial results were later presented in a GrowOn seminar series, hosted by OMAFRA: 
https://www.youtube.com/watch?v=pmya3QPdf-E 
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● Integrated feedback loops across all levels of the control architecture to continually refine 
predictions and actions. 

● Successfully ran two trials on mini-cucumbers to validate the approach. 

Experimental Results 

● Trial #2: 16.1% increase in cucumber yield using the same amount of electricity as the 
Baseline zone. 

● Trial #3: 31.9% improvement in Normalized Yield and 24.7% reduction in heating energy 
use. 

3. Discussion of Experimental Results and 
Rebuttal to the M&V Report 
We conducted a total of 3 comparative trials, summarized as follows: 

Trial Crop Growing Period AI Method Unique Characteristics 

1 Organic 
Eggplants 

Apr 19th to Oct 25th , 2022 Expert system 1/ Light control wasn’t 
handled by AI. 
2/ The trial was conducted 
in an older greenhouse. 

2 Mini 
cucumbers 

Jul 18th to Oct 18th , 2022 Physics-informed 
Reinforcement 
Learning 

Light control wasn’t yet 
handled by AI. 

3 Mini 
cucumbers 

Baseline zone: Oct 17th to 
Dec 16th , 2024 
AI zone: Nov 8th , 2024 to Jan 
9th , 2025 

Physics-informed 
Reinforcement 
Learning 

The two crops don’t have 
the same starting and 
ending dates 

Table 1: Summary of trials. Note that in trials #1 and #2, the two crops of comparison share the 
same crop cycles (same starting and ending dates) but in trial #3, the planting dates are shifted (as 
a business decision by GLG). Trials #2 and #3 share the same crop type, in the same greenhouse, 
but trial #1 was initially tested with eggplants in a different greenhouse. 

Each trial has its own caveat which limits our ability to truly validate the electricity use efficiency of 
the AI-based algorithm. In particular: 
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● In trials #1 and #2, lighting was controlled manually by the growers. This is due to the fact 
that the lighting system was initially installed and the power generator and its schedule 
needed to be stabilized. 

● In trial #3, we were able to control both lighting and climate control. However, the growing 

periods were shifted, leading to challenges for a rigorous comparison. 

3.1. Trials #1 and #2 Results and Analysis 

In these trials, lighting control was handled manually by the on-site growers and was the same in 

both zones. Therefore, comparing electricity use efficiency is equivalent to comparing yield, 
for which the results are as follows. 

Trial Crop Type Yield of Baseline 
Zone 

Yield of AI Zone Yield and Electricity 
Use Improvement 

1 Eggplants 17.06 kg/m2 21.93 kg/m2 28.5% 

2 Mini 
Cucumbers 

13.7 kg/m2 15.9 kg/m2 16.1% 

Table 2: Yield and electricity use efficiency comparison after trials 1 and 2. 

3.2. Trials #3 Results and Analysis 

3.2.1. Background 

Trial 3, conducted from Oct 17, 2024 to January 9, 2025, was designed to test the full autonomous 
capabilities of the AI system, including lighting control. Unlike the previous trials, this one sought to 
evaluate how well the system performed when it had more comprehensive control of climate 
parameters and the additional variable of artificial lighting. 
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3.2.2. The Seasonal Disparity 

A major complication in Trial 3 arose because the AI-controlled Autopilot zone started 24 days 

later than the grower-controlled zone. This introduced significant seasonal variation between the 
two compartments: 

● The later start meant the AI-controlled crop was grown deeper into the winter period, when 

natural light levels are substantially lower, and heating demands are higher. 
● This led to the AI compartment receiving only 54% of the total daily light integral (DLI) 

that the Baseline zone received. 
● The delay also overlapped more heavily with cold weather, increasing the complexity of 

climate control and energy efficiency performance evaluation. 

3.2.3. Adjustment Metrics and Results 

To ensure a fair and meaningful comparison between the AI-controlled (Autopilot) and 

grower-controlled zones, the evaluation relied on normalized performance metrics. These metrics 
account for differences in environmental inputs (e.g., light availability, heating demand) and are 
well-established in both agricultural research and energy systems engineering as appropriate for 
comparing system performance across non-identical operating conditions. 

Normalized Yield: Light Use Efficiency (LUE) 

Light Use Efficiency (LUE) is defined as the ratio of yield (kg/m²) to the cumulative Daily Light 

Integral (DLI), expressed in mol/m², received by the crop over the growing period. 

DLI quantifies the total amount of photosynthetically active radiation (PAR) available to plants, 
which is the primary driver of photosynthesis and biomass accumulation. In controlled environment 
agriculture, especially when comparing crops grown under different lighting conditions (natural 
vs. artificial or different seasonal light availability), LUE is a standard and physiologically sound metric 
for assessing productivity per unit of light input. It is widely used in indoor farming research and 

practice [1]. 

The theoretical justification for LUE as a normalized yield metric lies in the well-documented linear 

relationship between PAR and photosynthetic rate under non-saturating light levels [2], 
particularly relevant in winter conditions when light is often limiting. 

The yield and LUE results are provided in Table 3. According to trial results, the AI-controlled zone 
achieved a 29.41% higher LUE than the Baseline zone, indicating that it converted available light 
into yield more efficiently, despite operating under significantly lower natural light levels. 
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Metric Baseline Zone AI Zone Difference 

Cumulative Yield 
[kg/m2] 

8.69 7.55 -13% 

Cumulative Light 
Integral [mol/m2] 

851.40 572.08 -32.81% 

Solar PAR Light 
Integral 
[mol/m2] 

527.24 233.64 -55.69% 

LED PAR Light 
Integral 
[mol/m2] 

324.16 338.44 +4,4% 

LUE [g/mol] 10.2 13.20 +29.41% 

Table 3: Yield, light integral, and Light Use Efficiency analysis 

References 

1. Singapore Food Agency. Focusing on light-use efficiency: A key factor for profitable indoor crop 
production. Link 

2. Sun, Dongbao, and Qingsuo Wang. "Linear relationships between photosynthetic rate and 
photochemical energy expressed by PAR× Fv/Fm." American Journal of Plant Sciences 9.2 (2018): 
125-138 

Electricity Use Efficiency 

During the trial, natural sunlight was scarce, averaging only 3.77 mol/m²/day, compared to the 
20+ mol/m²/day typically ideal for cucumber cultivation. The LED systems used in both 

compartments had a relatively low intensity of 80 µmol/m²/s, yielding a maximum of 6.9 

mol/m²/day if operated continuously for 24 hours. 

In practice, both zones maximized their use of available artificial lighting: 

● Baseline zone average LED usage: 18.76 hours/day 
● AI zone average LED usage: 18.95 hours/day 

(Source: Table 14, M&V Report) 

Given that both zones operated their LED systems near full capacity—with average daily 
runtimes of approximately 19 hours—and followed nearly identical lighting schedules, the 
electricity consumption attributable to lighting was effectively equivalent across 
treatments. Assuming that the photosynthetic efficacy of the LED grow lights is comparable 
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to that of natural sunlight in terms of supporting plant growth, Light Use Efficiency (LUE) 

can be reasonably used as a proxy for electricity use efficiency in this context. 

As such, the 29.41% improvement in LUE also serves as a reasonable estimate for the 

electricity use efficiency gain in the AI-controlled zone. 

Heat Energy Use Efficiency 

To evaluate heating efficiency, we focused on the overlapping period during which both zones 
were simultaneously active: November 8 to December 16. This allowed for a fair comparison 

under similar ambient conditions. 

According to Table 4 below: 

● The AI-controlled zone consumed 21% less gas heating energy than the Baseline 
zone during this period. 

● Importantly, this reduction occurred despite the AI zone maintaining a slightly warmer 

average temperature: 
○ Baseline zone: 21.6 °C 

○ AI zone: 21.8 °C 

While the exact crop developmental stages may have differed between zones during this window, the 
temperature profiles were nearly identical, eliminating climate targets as a confounding factor. 
The ability of the AI system to deliver a comparable or warmer climate using significantly less heating 

input demonstrates a higher thermal energy use efficiency, attributable to more precise, 
data-informed control strategies. 

Metric Baseline Zone AI Zone Difference 

Daily averaged 
temperature [°C] 

21.6 21.8 +0.93% 

Heating Energy [MWh] 108.14 85.35 -21.07% 

CO2 concentration 
[ppm] 

576 681 +18.23% 

Vent opening [%] 3.44 3.05 -11.34% 

Table 4: Climate and heat energy use comparison during the overlapping period 
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3.2.4. Analysis 

We attribute the higher Light Use Efficiency (LUE) and greater energy use efficiency observed in the 
AI-controlled zone to its more effective venting strategy. Specifically, as shown in Table 4, the AI 
system maintained reduced venting during the winter period, which contributed to two key 
physiological and operational benefits: 

1. Higher CO₂ retention: Minimizing ventilation loss helps maintain elevated CO₂ 

concentrations inside the greenhouse, which enhances photosynthesis and thereby supports 
increased biomass accumulation and higher yields. 

2. Improved thermal retention: Reduced venting also allowed the greenhouse to retain more 
heat, decreasing reliance on active heating systems and lowering overall energy consumption. 

It is generally accepted that excessive reduction in ventilation can increase relative humidity and 

reduce airflow, potentially promoting conditions favorable to pests and pathogens. However, in this 
trial, we did not observe any pest or disease outbreaks attributable to high humidity. We 
hypothesize this was due to two mitigating factors: 

● Low absolute humidity during the winter, which facilitates rapid moisture exchange 
between the greenhouse interior and the colder, drier external environment. 

● The drying effect of heating, which offsets internal moisture buildup during colder periods. 

Together, these conditions enabled the AI system to adopt a lower-ventilation strategy without 
negative side effects, improving both energy and resource use efficiency. 

3.3. Rebuttal to the M&V Report 

3.3.1. Lack of Comprehensiveness 

The report exclusively focuses on a single trial – the final cucumber crop grown from November 2024 
to January 2025 – without accounting for two earlier trials where growing conditions between the AI 
and Baseline zones were concurrent and more directly comparable. This omission significantly 
undermines the report’s evaluative scope. In particular: 

● Trial 1 (eggplants, milestone 3) showed a 28.5% increase in yield; 
● Trial 2 (cucumbers, milestone 4) demonstrated a 16.1% increase in yield; 

both with the same light control and the same outdoor conditions. 
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3.3.2. Flawed Electricity Use Efficiency Analysis 

The M&V report attempts to evaluate Electricity Use Efficiency (EUE) by comparing the supplemental 
lighting energy to the crop yield. However, the methodology is flawed for the following reason: the 
report uses only the electrical energy consumed by LED lighting in the denominator while 
failing to account for natural solar radiation, which also significantly contributes to biomass 
formation. 

This leads to a fundamental mismatch between the energy input used in the denominator and the 
yield (which reflects total energy input from both sun and LEDs). This error distorts the EUE metric, 
especially because: 

● The Baseline Zone received substantially more sunlight due to an earlier start in the season. 
● The AI Zone, by contrast, operated deeper into winter with significantly less DLI (33% less 

total light according to the trial data). 

Since the sunlight contribution was not normalized, and electricity was nearly equally applied in 

both zones (approximately 19 hours/day LED usage), the reported EUE unfairly disadvantages the 
AI zone. 

A more rigorous approach is to use Light Use Efficiency (LUE), yield per unit of total 
photosynthetically active light energy, which properly integrates both natural and artificial lighting. 
The rationale was discussed in more detail in Section 3.3.3. 

3.3.3. Mischaracterization of Lighting Utilization Potential 

The report implies there is still an unexploited lighting efficiency gap that “neither the Baseline 
operator nor the autonomous grower system could exploit.” This statement contradicts the 
operational data. 

As shown in Table 14 of the M&V report, both zones utilized their available LED capacity to 
near-maximum: 

● Baseline zone: 18.76 hours/day 
● AI zone: 18.95 hours/day 

This usage is close to the 24-hour maximum, especially considering plant photoperiod limitations. 
Given the low LED capacity (80 µmol/m²/s) and minimal sunlight during the trial period (avg. 
3.77 mol/m²/day), there was no practical room for increased lighting, and the AI system 

already operated at max lighting levels. 
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Therefore, the suggestion of untapped lighting potential is not supported by the system constraints or 
the trial's physical lighting deployment. 

3.3.4. Understated Interpretation of Heating Energy Savings 

The report acknowledges that the AI-controlled zone used 21% less heating energy during the 
overlapping period (November 8 to December 16, 2024), as shown in Table 10 of the M&V report, but 
casts doubt on comparability due to possible differences in crop stages. 

However, this skepticism is not justified by the data: 

● The average temperature in the AI zone during the same period was slightly higher (21.8 °C 

vs 21.6 °C). 
● Thus, the AI zone achieved thermal savings despite maintaining a warmer 

environment, indicating a clear gain in heating energy efficiency. 

4. Main Lessons Learned 
Throughout the course of this multi-phase project, the team encountered a diverse set of technical, 
operational, and methodological challenges. Each challenge provided critical learning opportunities 
that strengthened the development, deployment, and evaluation of the AI-powered autonomous 
greenhouse control system. This section summarizes the key difficulties encountered and the 
corresponding lessons that can inform future work in AI-driven controlled environment agriculture 
(CEA). 

4.1. Asynchronous Crop Timelines and Seasonality 

Challenge 

Trial 3 (Milestone 4, Trial 2) involved crops planted at different times in the AI and Baseline zones, 
leading to misaligned outdoor conditions, particularly with respect to sunlight and outdoor 
temperature. 
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Lesson Learned 

Trial design must carefully control for seasonal and temporal variables to enable valid 

comparisons. When synchronization is not possible, normalized performance metrics (e.g., Light Use 
Efficiency) must be used to ensure fair evaluation. Moreover, including multiple trials across 

seasons helps counterbalance individual trial biases. 

4.2. Evaluation Methodology Misalignment 

Challenge 

The Measurement and Verification (M&V) report focused exclusively on a single, asynchronous trial 
and used flawed methodology to assess electricity use efficiency. 

Lesson Learned 

1. Fair and comprehensive evaluation of a new system requires the discussion of (normalized) 
performance metrics during the design of the trials. If the trial design is changed, the 
performance metrics should be discussed and finalized before the conclusion of the trial. 

2. Future projects should involve M&V planning in parallel with trial design to align evaluation 

methods with scientific standards. 

4.3. Integration with Legacy Infrastructure 
Challenge 

The initial lack of API access in the Hoogendoorn climate control system presented a major barrier to 
seamless data acquisition and actuation. 

Lesson Learned 

Legacy systems in commercial greenhouses are often closed and proprietary. Successful AI 
deployment requires creative integration solutions, such as Robotic Process Automation (RPA) 

and custom OCR-based data extraction. Future projects should allocate time and resources for 
system-level integration engineering. 
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4.4. Data Reliability and Sensor Issues 

Challenge 

During early testing (Milestone 3), the system encountered unreliable or missing sensor data (e.g., 
abnormally low leaf temperature due to disconnected sensors), which could undermine the control 
logic if left unhandled. 

Lesson Learned 

Robustness to sensor failures must be designed into the system from the outset. The team 

implemented error filtering mechanisms and contingency logic to detect and safely ignore 
outlier or missing data. Future AI deployments should include redundant sensing strategies and 

anomaly detection as core infrastructure components. 

4.5. Hardware and Control Constraints 

Challenge 

Despite the AI system’s ability to control climate metrics such as heating, CO₂, venting, and fogging, 
it was not permitted to control lighting or irrigation at various phases of the project due to 
technical and operational limitations on-site. 

Lesson Learned 

A flexible control architecture is essential. The AI model was successfully adapted to optimize the 
remaining controllable parameters in real time. Future deployments should clearly define control 
scope upfront and plan fallback strategies when full control is not feasible. 

4.6. Multi-Scale Nature of Learning in Greenhouse 
Systems 
Challenge 

A greenhouse is a tightly coupled multi-timescale system, requiring the AI to learn and coordinate 
two fundamentally different digital twins: 

● A climate digital twin that evolves on a fast timescale (minutes to hours), driven by control 
inputs like venting, heating, and lighting. 
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● A crop digital twin that evolves slowly (weeks to months), where biomass accumulation and 

yield outcomes are the result of long-term cumulative interactions. 

Learning to control both dynamics simultaneously is non-trivial because: 

● Fast dynamics require reactive, high-frequency decision-making. 
● Slow dynamics provide sparse, delayed, and often noisy feedback signals. 

Lesson Learned 

We adopted a hierarchical control architecture to separate tactical (short-term) decisions from 

strategic (long-term) learning. Furthermore, initializing the agent with expert logic (via imitation 

learning) was essential to prevent instability caused by the long reward horizon of crop growth. 
Future work will benefit from further decomposing these learning loops and using curriculum learning 

techniques to stage training across temporal scales. 

4.7. High Model Uncertainty and Limited Labeling 
Challenge 

Greenhouse systems exhibit high environmental variability and low observability of key internal 
states. As a result: 

● The digital twins, especially the crop growth models, are learned under conditions of 
significant uncertainty and partial observability. 

● Ground truth data for crop physiological state (e.g., canopy development, stress level, root 
biomass) is rarely available or consistently recorded. 

This uncertainty makes it difficult for reinforcement learning agents to learn effective policies without 
overfitting or acting on spurious correlations. 

Lesson Learned 

To compensate, we embedded domain-specific constraints and grower heuristics directly into the 
control policy, creating hybrid AI systems that combine learning with rule-based logic. These 
constraints enforce operational safety, avoid actions that would violate biological or physical limits, 
and ensure the AI acts within agronomically acceptable bounds, even in the absence of direct crop 

state feedback. This design philosophy is essential when deploying AI in partially observed biological 
systems. 
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5. Generalization of the Model to Other Use 
Cases 
The development of an AI-powered autonomous greenhouse controller in this project was 
intentionally designed with extensibility in mind: from the control architecture and software 
infrastructure to the learning algorithms and interface protocols. This section explores the broader 
applicability of the technology across industrial domains. 

5.1. Applicability to Other Agricultural Crops 

The AI control system developed in this project is not crop-specific. While the trial implementation 

focused on cucumbers and eggplants, the underlying control architecture – based on climate and 

crop digital twins, feedback loops, and reinforcement learning – can generalize to a wide range of 
crops under protected cultivation. 

Key attributes that support generalization 

● Modular climate control: The controller optimizes independently tunable variables such as 
temperature, humidity, CO₂, and lighting, which are relevant to virtually all horticultural crops. 

● Adaptable learning framework: The reinforcement learning agent can be retrained or 
fine-tuned on new crops by updating the reward structure and constraints based on 

crop-specific agronomic targets (e.g., harvest timing, size, color, or stress thresholds). 
● Sensor-agnostic data ingestion: The data pipeline supports integration of diverse sensor 

types, including SDI-12 and analog 4–20 mA devices, which makes the system flexible to 
retrofit across existing facilities with minimal reconfiguration. 

That said, adaptation to different crops will require: 

● Domain-specific calibration of the crop digital twin. 
● Crop-specific constraints and heuristics to reflect growth stages, physiological limits, and 

market quality standards. 
● A minimum baseline of historical crop and climate data to initiate effective model training. 
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5.2. Transferability to Buildings and Industrial Facilities 

The AI control framework extends naturally to Buildings and Industrial Process Automation, all 
of which share three critical characteristics: 

● Highly variable external conditions (weather, occupancy, process loads) 
● Tight control over environmental conditions (e.g., temperature, ventilation, humidity) 
● Strong incentives to minimize energy consumption, cost, and carbon footprint 

Applications in Building Environments 

In MURBs and commercial buildings, the control system can replace traditional rule-based HVAC 

automation with AI that learns to: 

● Optimize HVAC setpoints based on occupancy, forecasted weather, and dynamic pricing. 
● Reduce peak energy loads by pre-conditioning or load-shifting. 
● Maintain thermal comfort while minimizing unnecessary energy use. 

Integration with building standard protocols like BACnet or Modbus can allow the AI system to 
interact with existing building management systems, making it deployable without significant 
hardware retrofits. 

Applications in Energy-Intensive Manufacturing Industries 

In sectors such as: 

● Food and beverage processing 

● Pharmaceutical manufacturing 

● Electronics fabrication 

● Chemical and materials plants 

…AI-powered control has massive potential to improve energy use efficiency, process stability, 
and resource optimization. These environments often involve: 

● High thermal loads (e.g., ovens, dryers, cleanrooms) 
● Multi-step production cycles 
● Strict environmental controls (temperature, humidity, airflow, contamination risk) 

With appropriate domain customization, the system could serve as an intelligent process control 
layer across many industrial verticals. 
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6. Conclusion 
This project set out to evaluate the feasibility and performance of an AI-powered autonomous 
greenhouse control system, developed by Koidra, in partnership with Great Lakes Greenhouses (GLG) 
and Agriculture & Agri-Food Canada, with a central emphasis on improving electricity use efficiency in 

commercial greenhouse operations. Over the course of multiple trials spanning three years and 

several crop cycles, the project systematically tested the AI system’s ability to manage climate 
variables, optimize resource use, and improve crop yield under real-world conditions. 

The results indicate that the AI system can deliver measurable energy efficiency gains, particularly in 

the domains of light utilization and heating energy. 

While direct measurement of electricity savings was complicated by seasonal shifts and limited 

lighting capacity in the trial infrastructure, these proxy metrics suggest that AI control has the 
potential to meaningfully reduce energy intensity per kilogram of yield, a core objective of IESO’s 
funding mandate. 

Beyond the numeric results, the project also surfaced valuable operational and methodological 
insights: 

● The AI system is technically compatible with legacy greenhouse infrastructure, though initial 
integration requires custom workarounds when programmatic APIs are unavailable. 

● Autonomous control can safely handle climate decisions, even in tightly constrained winter 
conditions, without adverse crop or plant health outcomes. 

● Robust evaluation requires normalized metrics and seasonally synchronized trials. Future 

measurement frameworks should be co-designed with deployment teams to ensure fair 
attribution of energy gains. 

Overall, this project demonstrates the viability of AI-driven climate control in achieving tangible 
energy efficiency outcomes in greenhouse agriculture. While the results should not be 
overgeneralized from the three trials, the evidence supports further exploration of this technology 
across more diverse environmental settings and crop types. 

Finally, the architectural flexibility and learning-based control foundation developed here offer strong 

potential for cross-sector adaptation, including buildings and energy-intensive manufacturing 

environments. These extensions represent promising pathways for broadening the impact of this 
technology beyond agriculture and aligning with Ontario’s long-term energy efficiency and emissions 
reduction goals. 
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