TDWG Planning Presentation

Hydro Ottawa's Planning Process

Joanna Hollingsworth, EIT

February 27, 2023

Load and Growth Forecasting

Transmission Supply & Hydro Ottawa Service Territory

The Ottawa area is primarily supplied by 500 kV circuits from Lennox TS (located in Lennox and Addington County)

The region is further supplied through a network of 230 kV and 115 kV circuits

Peak Review- Setting the Baseline

- 1. Coincident peak demand on feeders on the hottest hour of the year
- 1. Bringing the system back to normal configuration
- 1. Eliminating extreme temperature impacts on loadweather normalized peak
- 1. Rolling it up to the Station peak

		Annual Feeder Peak Review	
	Peak Deman d (Actual)	Peak Demand (Normal config)	Weather Normalized Peak
Feeder 1	10	10	9
Feeder 2	20	10	9
Feeder 3	0	10	9

Growth Forecasts

Planning Challenges

- Net Zero Federal, Provincial and City targets
 - Many unknowns that make future and operational Planning difficult
 - Magnitude and location of new loads (demand estimates)
- DER limitations
 - Visibility
 - Non-dependable generation
 - Typically, planning is based on the maximum static case
 - Lack of DER control on our grid
 - System constraints (short circuit, thermal constraints, etc.)

Non - Coincident Peaks Example

kw

Next Steps

- Pilot Projects EV Everywhere (next slide)
- Explore opportunities for collaboration between LDC and customer

- Engage with consultants to understand impacts of EVs and electrification
- Continue to collaborate with IESO on Demand-Side Management initiatives, DER management framework and protocols, NWAs, and other initiatives such as the Grid Innovation Fund for EV Everywhere
- Keep the system ready by adapting LDC standards, planning and operating practices

EV Everywhere

IESO GIF initiative / Sandbox for the IESO, LDC, and aggregator participation framework protocol

Program addresses impacts for:

- Hydro Ottawa
 - Impact on low and medium voltage distribution network of EV Clusters
 - Realtime predictions on load trends
 - Acceptance of signals from Operations for load shifting or injection of battery energy
- IESO
 - Participation in IESO Administered DER markets

ADMS

Advanced Distribution Management System

- Real time energy flow
- Use DERs as NWAs

Hydro Ottawa's ADMS will be ready for use by 2025

Comments or Questions?

Unit Load Estimates

Table 2: Commercial Load⁷

Туре	Unit Demand (kW) / m ²
Office	0.043
Food Services	0.0992
Light Industrial	0.0537
Mall	0.0537
Commercial	0.0537
Healthcare	0.031
Retail	0.031
Education	0.031
Warehouse	0.0099
Storage	0.0099

Table 3: Residential Load (Includes Public Load)

Туре	Unit Demand (kW)	
Townhouse	2.06	
Single Home	2.84	

