Transmission-Distribution Coordination to Enable DER Participation in IESO Wholesale Markets

IESO T-D Coordination Working Group, January 31, 2022

Lorenzo Kristov, PhD, Principal Market Architect Electric System Policy, Structure, Market Design

Outline

- The Ontario IESO Context
- Global DER industry trends and plausible high-DER future system
- DERs in a participatory distribution network; crucial role of the LDC
- The T-D coordination problem
- Grid Architecture logic: objectives, functions, roles & responsibilities
- Centralized versus Layered Architecture
- Brief survey of other regions: FERC Order 2222 & US ISOs, AUS, UK
- Coordination architecture being considered by some US LDCs

Disclaimer — The material in this presentation reflects the perspectives and expertise of the presenter and is not intended to reflect the policies or perspectives of the IESO.

The Ontario IESO Context

IESO DER Market Vision & Design Project

Problem Statement: How can the IESO cost-effectively enhance the value DERs can provide to Ontario's electricity system by expanding participation in the wholesale markets?

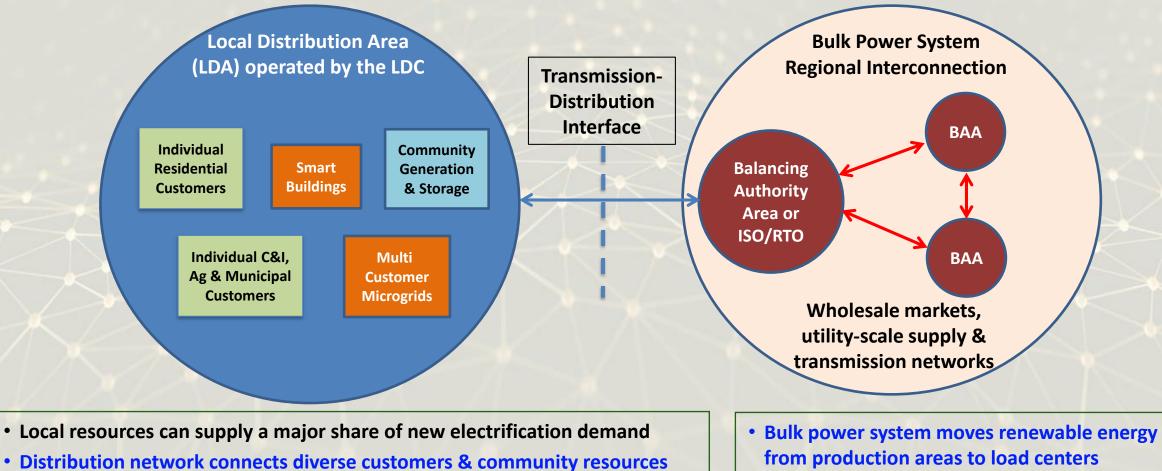
DER Definition

A resource that is directly connected to the distribution system, or indirectly connected to the distribution system behind a customer's meter; and generates energy, stores energy, or controls load

The Ontario DER Landscape

- 5000 MW DER deployed already and strong growth expectations
- Customer decarbonization & electrification objectives are a driver
- Community preferences for clean energy
- Growing IESO needs for reliability resources

Global Electricity Industry Trends


DERs are a global phenomenon, presenting robust competition to "The Grid" for the first time in 100 years

- DERs continue to improve in performance, functional capability, scalability & cost
- Customers want them: The "behind-the-meter market" offers cost-effective choices for meeting their needs for electricity services
- Local & indigenous jurisdictions want them: DERs & microgrids can support community-level initiatives for decarbonization, resilience and energy/economic justice
- Meanwhile The Grid is becoming more expensive and more vulnerable to service disruptions (climate events, cyber attacks, pre-emptive shutoffs)

The challenge

• Reimagine The Grid to align customer/community DER decisions with system-wide needs and societal goals, to maximize total benefits of DERs

The future "bimodal" system: a diverse participatory distribution network complements the bulk system

- Customers are grid participants, not just consumers
- LDC manages local grid and may reduce adverse bulk system impacts

• Supplements local production and allows regional energy trading

Creating the Participatory Distribution Network

Distribution can no longer be simply a one-way kWh delivery system

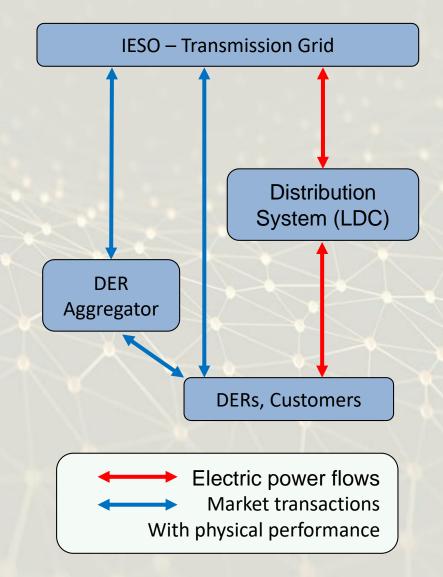
• The LDC must enable stand-alone and community DERs and customers with DERs to become network participants and provide services to the system

Compensating DERs for providing system services

- Improves the economics of customer/community DER investment
- Helps align DER investment & operating decisions with power system capabilities & needs, to improve whole-system efficiency

Domains for DER service provision

- Wholesale market services the focus of this working group effort
- Distribution system services DERs can reduce grid infrastructure upgrade needs
- Customer services behind-the-meter DER adoption for customer benefits
- Multi-use applications of DERs (value stacking) maximizing the value of DERs
 Focus on the LDC: The high-DER future depends on expanding LDC functional
 capabilities and establishing coordination with IESO at the T-D interfaces


The Transmission-Distribution Coordination Problem

- Direct participation by DER/DERA in the IESO markets involves transactions, with physical performance requirements, between the IESO and the DER owner/aggregator; the LDC is not a party to these transactions
- Physical performance by DER/DERA to fulfill IESO market commitments necessarily affects & is affected by distribution system conditions
- "Tier bypassing occurs when a device, system, or agent at one level of a grid hierarchy connects to, directs, or controls an element more than one tier away." (PNNL-29117)

DER-IESO market transactions bypass the distribution system, where electric power must flow for DER/DERA to deliver IESO market services — **even without backflow from D to T**

This tier bypassing creates a coordination gap

Value stacking adds complexity; e.g., conflicting instructions

Transmission-Distribution Coordination Architecture*

 Specify highlevel objectives —
 "Enhance the value of DERs to Ontario's
 electricity system" 2. Identify system performance required to meet objectives — "Expand DER participation in IESO markets" 3. Specify functions needed for performance e.g., real-time balancing; DER dispatch, visibility, measurement 4. Assign functional roles & responsibilities to principal actors, particularly ISO, LDC, DER owner & aggregator

5. Determine technical & regulatory reqts for actors to perform assigned functional roles & responsibilities

- The sequence of architecture activities is essential
- An actor's technical reqts (5) e.g., data needs, visibility, controls depend on the functions it's responsible for
- Regulatory reqts (5) include, e.g., operating procedures, revenue models, contract structures, rates for services, incentive structures

* See "Development of a Transmission-Distribution Interoperability Framework," prepared by ICF for IESO, May 2020

Required Power System Functions (Step 3)

General Functions

<u>System-related:</u> Real-time balancing; frequency regulation; congestion management; resource & transmission scheduling; spot market operation & settlement; contingency dispatch; monitor distribution grid conditions and take needed actions; T&D system infrastructure planning; manage new resource interconnections

<u>Customer-related</u>: Retail electricity supply; metering & billing; interconnection of new load; approval of behind-the-meter DER connections

How have these functions been defined and assigned in the traditional power system? How do they need to be updated for high DER & DER participation in IESO markets?

T-D Coordination Functions (not exhaustive)

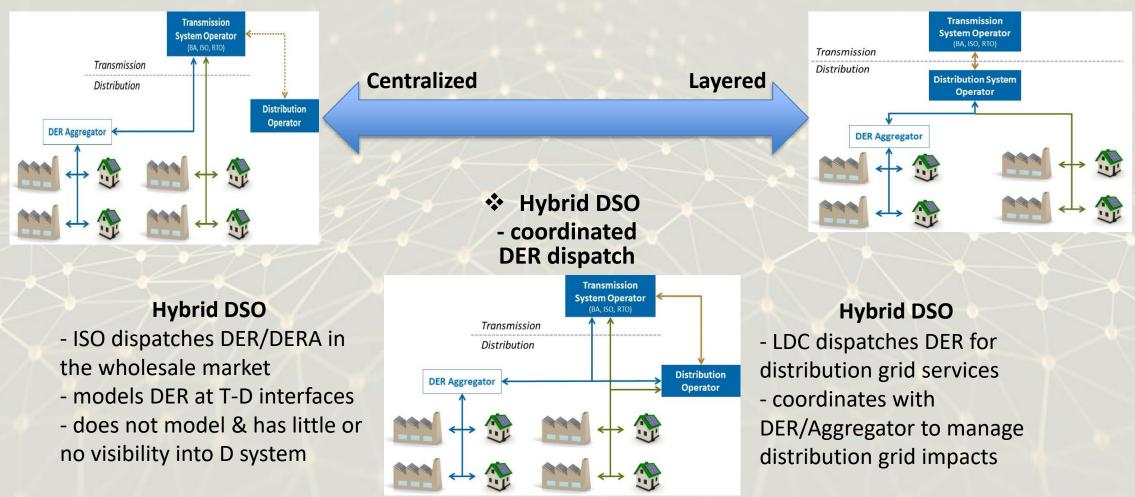
Monitor DER operational status and performance; communicate changes in DER/DERA capability as needed; direct DER/DERA to modify behavior if needed for distribution reliability; dispatch DER/DERA for distribution grid services

Architectural Possibilities (Step 4)

T-D Coordination Architecture should meet these objectives

<u>IESO objective</u>: DER provision of IESO market services is dependable, predictable (in operational time) and accurately measurable (for market settlement)

<u>LDC objective:</u> (primary) DER/DERA are able to participate fully in IESO markets with no adverse impacts on distribution system operation; (optional) DER/DERA also provide distribution grid services


<u>DER owner/aggregator objective</u>: DERs earn a dependable revenue stream that fully values services they are technically capable of providing

A foundational architectural consideration is the degree of centralization vs layering of functional roles & responsibilities

<u>Total TSO</u> => The IESO models distribution circuits, sees DERs at actual locations, monitors distribution conditions & manages DER impacts on distribution <u>Total DSO</u> => The DSO (LDC) coordinates all DER/DERA market activity & presents as a single hybrid resource to IESO at each T-D Interface; eliminates tier bypassing

Consider possible T-D Coordination Frameworks along a spectrum between fully centralized & fully layered

Total TSO

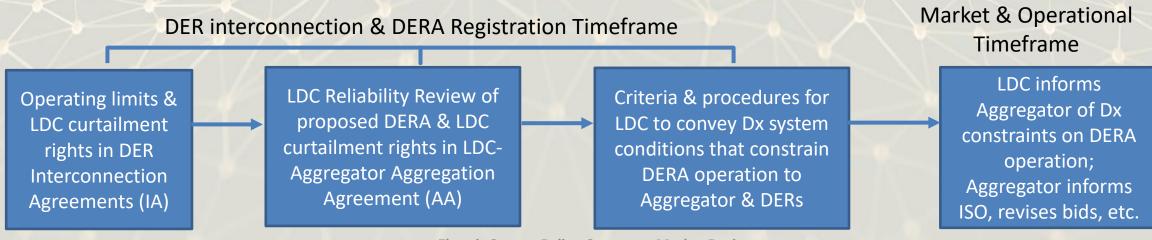
Total DSO

••••

A Brief Survey of Other Regions — US

1. FERC Order 2222 and the US ISOs/RTOs

- 2222 explicitly requires direct participation by DERA in ISO/RTO markets
 - Major responsibilities on Aggregators: telemetry, metering & settlement at DERA level; conveyance of ISO dispatches to DERs; prompt reporting of reduced DERA capacity
 - Provides 60-day period for DSO to review proposed DERA for distribution impacts
 - Provides for DSO to implement "transparent non-discriminatory procedures" to override ISO dispatch instructions
 - ISO will apply non-performance penalties to DERA even if due to distribution issue; FERC declined to assign liability to DSO for distribution-related DERA curtailments
 - Allows for DSO to assess wholesale market "participation charge" to Aggregators to recover DSO's implementation costs
 - Allows for "heterogeneous" DERA that include both non-injecting DER (DR resources) and injecting DER
- All US ISOs/RTOs are pursuing a more centralized hybrid model
 - CAISO has had DERA participation model since 2016 and nobody uses it (prefer DR)


A Brief Survey of Other Regions — US

Major T-D coordination issues with FERC Order 2222

- How to communicate & manage distribution conditions, planned & unplanned circuit outages, that affect DERA capacity to perform
- Details of studies & criteria for LDC 60-day review of proposed DERA; ISO criteria for accepting LDC finding of significant operational risk
- Details of procedure for LDC over-ride of ISO dispatch of a DERA

Coordination architecture being explored by some US LDCs for 2222 compliance

<u>Strategy:</u> Mitigate DER/DERA distribution impacts in advance through interconnection limits & aggregation agreement, to eliminate need for real-time LDC review of ISO dispatches

A Brief Survey of Other Regions — UK & Australia

2. UK Open Networks Project

- Driven by government mandates for decarbonization, digitization, decentralization
- Goal to maximize system flexibility from DERs to manage peak loads & constraints
- Defined 8 key DSO functions, including management of DER impacts on distribution, and distribution constraint impacts on DERs
- Project ongoing, implementing least-regrets DSO-ISO coordination; DER registry

3. Australia Open Networks Projects

- Driven by grid instability concern due to massive rooftop solar PV adoption
- Concluded June 2020 with adoption of "Hybrid DSO" model separating distribution market operator (DMO => assign to AEMO (ISO)) and distribution system operator (DSO => assign to DNSP (LDC)) — comparable to Hybrid DSO (slide 11)

Common elements

- LDCs are wires-only companies, separate from retailers, unlike US
- Efforts started with defining required functions, focus on DER-ISO-LDC coordination

Thank you.

Lorenzo Kristov LKristov91@gmail.com

Electric System Policy, Structure, Market Design

with haddentille