Market Rules

Chapter 8 Physical Bilateral Contracts and Financial Markets -Appendices

Library Record No.MDP_RUL_0002_07Document NameMarket Rules for the Ontario Electricity Market; MRP Consolidated Draft

MRA's included;

- Market Entry and Prudentials:
 - o MR.461.R00
 - o MR.450.R00
 - o MR.451.R00
 - o MR.453.R00
 - o MR.453.R01
 - o MR.453.R02
 - o MR.453.R03
 - o MR.453.R04
- Market Power Mitigation:
 - o MR.461.R01
 - o MR.455.R00 (March 2023 update)
- Calculation Engines:
 - o MR.458.R00
 - o MR. 459.R00
 - o MR. 460.R00
 - o MR. 461.R02
- Interim Alignment:
 - o MR.457.R00
 - o MR.457.R01
 - o MR.457.R02
 - o MR.457.R03
 - o MR.00461.R03
- Settlements:
 - o MR.452.R00
 - o MR.456.R03
 - o MR.456.R02
 - o MR.456.R01
 - o MR.461.R04
 - o MR.456.R00

Publication date: June 1 2023 (includes MR-00474- enabling Hybrid Resources, MR-00475 RSS, MR-00467 Improving Accessibility of Operating Reserve and MR-00471 Updates to Synchrophasor Monitoring Requirements in advance of their inclusion in Baseline).

Issue/Draft	Reason for Issue	Date
Issue 1.0	Baseline 8.0	September 25, 2002
Issue 2.0	Baseline 22.0	September 9, 2009

Document Change History

Related Documents

Library Record No.	Document Title	Version
MDP_RUL_0002	Market Rules for the Ontario Electricity Market	34.0

Table of Contents

Appendix 8.1 – Mathem	atical Formulation of the TR Objective Function and
Constraints	1
Appendix 8.2	4

Appendix 8.1 – Mathematical Formulation of the TR Objective Function and Constraints

- 1.1 This Appendix describes the objective function used to determine the number of *transmission rights* to be awarded to each *TR bidder* and sold by each *TR offeror* in a given round of a *TR auction*.
- 1.2 The objective function used for each *TR auction* has as its mathematical objective the maximization of the benefit, measured in dollars, of the aggregate willingness of successful *TR bidders* to pay for *transmission rights* that they have been awarded in a given round of a *TR auction*, net of the amounts that successful *TR offerors* were willing to accept for those *transmission rights*, as constrained by the results of the simultaneous feasibility test required to be conducted in accordance with section 4.6 of this Chapter.
- 1.3 The objective function for each round of a given *TR auction* is to:

$$\max\sum_{j\in J_r}A_jB_jT_{iwpj},$$

where:

 J_r is the set of *TR bids* and *TR offers* for *transmission rights* submitted in round *r* of the *TR auction*;

 A_j is the proportion of *TR bid j* that is awarded in the *TR auction*;

 B_j is, in respect of a *TR bidder*, the maximum price that the *TR bidder* submitting *TR bid j* offers to pay for a *transmission right* in that *TR bid* and, in respect of a *TR offeror*, is the minimum price that the *TR offeror* submitting *TR offer j* for that *transmission right* offers to accept for that *transmission right*; and

 T_{iwpj} is, in respect of a *TR bidder*, the number of *transmission rights* associated with injection *TR zone i* and withdrawal *TR zone w* valid in period *p* that the *TR bidder* submitting *TR bid j* bids to purchase and, in respect of a *TR offeror*, the number of *transmission rights* associated with injection *TR zone i* and withdrawal *TR zone w* valid in period *p* that the *TR offeror* submitting *TR offer j* offers to sell; subject to the constraint that:

$$0 \le A_j \le 1$$
 for all $j \in J_r$,

and also subject to the following two additional constraints, each of which must be honoured for every period p in which *transmission rights* available for purchase in the *TR auction* are valid:

$$\sum_{j \in J_r} A_j T_{iwpj} PSF_{iwc} + PT_{iwpr} PSF_{iwc} \le U_{crp} \text{ for all } c \in C^+,$$

and

$$\sum_{j \in J_r} A_j T_{iwpj} NSF_{iwc} + PT_{iwpr} NSF_{iwc} \geq L_{crp} \text{ for all } c \in C^-,$$

where:

 PSF_{iwc} is the greater of (i) zero and (ii) the shift factor that determines the incremental effect on the flow of power over constraint *c* that results from an incremental injection at *TR zone i* and an offsetting withdrawal at *TR zone w*,

 PT_{iwpr} is the number of *transmission rights* associated with injection *TR zone i* and withdrawal *TR zone w* valid in period *p* that meet the following criteria: (1) they were purchased by or awarded to *TR participants* in a previous *TR auction* or in a round of the *TR auction* conducted before round *r*, (2) they have not been sold by their respective *TR holders* in a previous *TR auction* or in a round of the *TR auction* conducted before round *r*, (3) they have not been offered for sale by their respective *TR holders* in round *r* of the *TR auction*;

 U_{crp} is the maximum limit established for the flow of power over constraint c in period p for round r of the *TR auction*;

 C^+ is, in respect of the flow of power across an *interconnection*, the set of constraints that specifies a maximum limit on the flow of power over that *interconnection*;

 NSF_{iwc} is the lesser of (i) zero and (ii) the shift factor that determines the incremental effect on the flow of power over constraint *c* that results from an incremental injection at *TR* zone *i* and an offsetting withdrawal at *TR* zone *w*;

 L_{crp} is the minimum limit established for the flow of power over constraint c in period p for round r of the *TR auction*; and

C is, in respect of the flow of power across an *interconnection*, the set of constraints that specifies a minimum limit on the flow of power over that *interconnection*

IESO

Appendix 8.2

[Intentionally left blank]

