

Market Rule Amendment Proposal Form

Part 1 - Market Rule Information

Identification No.:	MR-00458-R00		
Subject:	Market Renewal Program: The Day-Ahead Market Calculation Engine		
Title:	Market Renewal Program: The Day-Ahead Market Calculation Engine		
Nature of Proposal:	☐ Alteration ☐ Deletion ☐ Addition		
Chapter:	7		
Appendix:	Appendix 7.5 (New) Appendix 7.5A – The DACP Calculation Engine Process – delete in its entirety		
Sections:			
Sub-sections proposed for amending:			
Current Market Rules Baseline:	December 1, 2021		

Version	Reason for Issuing	Version Date
1.0	Draft for Stakeholder Review	February 4, 2022
2.0	Draft for Stakeholder Review	July 8, 2022
3.0	<u>Draft for Stakeholder Review</u>	March 13, 2024

Approved Amendment Publication Date:

Approved Amendment Effective Date:

Part 3 - Explanation for Proposed Amendment

Summary

Insert Text Here

Background

Insert Text Here

Discussion

Insert Text Here

Part 4 - Proposed Amendment

Note: The proposed amendments to Appendix 7.51A – The Day-Ahead Market Calculation Engine, while not shown as (redlined) changes to existing market rules, represent entirely new sections in the market rules.

Appendix 7.5 – The Day-Ahead Market Calculation Engine Process

1.1 Purpose

1.1.1 This appendix describes the process used by the *day-ahead market calculation engine* to determine commitments, schedules and prices for the *day-ahead market*.

2 Day-Ahead Market Calculation Engine

2.1 Passes of the Day-Ahead Market Calculation Engine

- 2.1.1 The *day-ahead market calculation engine* shall execute three passes to produce day-ahead schedules, commitments and *locational marginal prices*.
 - 2.1.1.1 Pass 1, the Market Commitment and Market Power Mitigation Pass in accordance with section 7;
 - 2.1.1.2 Pass 2, the Reliability Scheduling and Commitment Pass in accordance with section 17; and
 - 2.1.1.3 Pass 3, the DAM Scheduling and Pricing Pass, in accordance with section 19.

3 Information Used by the Day-Ahead Market Calculation Engine

3.1.1 The *day-ahead market calculation engine* shall use the information in section 3A.1 of Chapter 7.

4 Sets, Indices and Parameters Used in the Day-Ahead Market Calculation Engine

4.1 Fundamental Sets and Indices

- 4.1.1 A designates the set of all *intertie zones*;
- 4.1.2 *B* designates the set of buses identifying all *dispatchable* and non-*dispatchable* resources within Ontario;
- 4.1.3 $B^{PRL} \subseteq B$ designates the set of buses identifying *price responsive loads*;
- 4.1.4 $B^{DL} \subseteq B$ designates the set of buses identifying *dispatchable loads*;
- 4.1.5 $B^{HDR} \subseteq B$ designates the set of buses identifying hourly demand response resources;
- 4.1.6 $B^{NDG} \subseteq B$ designates the set of buses identifying *non-dispatchable generation resources*;
- 4.1.7 $B^{DG} \subseteq B$ designates the set of buses identifying dispatchable generation resources;
- 4.1.8 $B^{NQS} \subseteq B^{DG}$ designates the subset of buses identifying dispatchable non-quick start resources;
- 4.1.9 $B^{PSU} \subseteq B^{NQS}$ designates the subset of buses identifying *pseudo-units*;
- 4.1.10 $B^{VG} \subseteq B^{DG}$ designates the subset of buses identifying *dispatchable variable generation resources*;
- 4.1.11 $B^{ELR} \subseteq B^{DG}$ designates the subset of buses identifying *energy limited resources*;
- 4.1.12 $B^{HE} \subseteq B^{DG}$ designates the subset of buses identifying *dispatchable* hydroelectric *generation resources*;
- 4.1.13 $B_s^{HE} \subseteq B^{HE}$ designates the subset of buses identifying *dispatchable* hydroelectric *generation resources* in set $s \in SHE$;
- 4.1.14 $\mathscr{D}(B^{HE})$ designates the set of all subsets of the set B^{HE} ;
- 4.1.15 $B_{up}^{HE} \subseteq \mathcal{D}(B^{HE})$ designates the set of buses identifying all upstream *dispatchable* hydroelectric *generation resources* with a registered *forebay* that are linked via *time lag* and *MWh ratio dispatch data* with downstream *dispatchable* hydroelectric *generation resources* with a registered *forebay*;

- 4.1.16 $B_{dn}^{HE} \subseteq \mathcal{D}(B^{HE})$ designates the set of buses identifying all downstream *dispatchable* hydroelectric *generation resources* with a registered *forebay* that are linked via *time lag* and *MWh ratio dispatch data* with upstream *dispatchable* hydroelectric *generation resources* with a registered *forebay*;
- 4.1.17 $B_r^{REG} \subseteq B$ designates the set of internal buses in *operating reserve* region $r \in ORREG$;
- 4.1.18 $B_p^{ST} \subseteq B^{PSU}$ designates the subset of buses identifying *pseudo-units* with a share of steam turbine *resource* $p \in PST$;
- 4.1.19 $B^{NO10DF} \subseteq B^{PSU}$ designates the subset of buses identifying *pseudo-units* that cannot provide *ten-minute operating reserve* from the duct firing region;
- 4.1.20 *C* designates the set of contingencies that shall be considered in the *security* assessment function;
- 4.1.21 *D* designates the set of buses outside Ontario, corresponding to imports and exports at *intertie zones*;
- 4.1.22 $D^{GMPRef} \subseteq D$ designates the set of *global market power reference intertie zones*, and boundary entity resources for those interties;
- 4.1.23 $D_r^{REG} \subseteq D$ designates the set of *intertie zone* buses identifying *boundary entity resources* in *operating reserve* region $r \in ORREG$;
- 4.1.24 $DX \subseteq D$ designates the subset of *intertie zone* buses identifying *boundary entity resources* that correspond to export *bids*;
- 4.1.25 $DI \subseteq D$ designates the subset of *intertie zone* buses identifying *boundary entity resources* that correspond to import *offers*;
- 4.1.26 $D_a \subseteq D$ designates the set of all buses identifying boundary entity resources in intertie zone $a \in A$;
- 4.1.27 $DX_a \subseteq D_a$ designates the subset of *intertie zone* buses identifying *boundary entity resources* that correspond to export *bids* in *intertie zone* $a \in A$;
- 4.1.28 $DI_a \subseteq D_a$ designates the subset of *intertie zone* buses identifying *boundary entity resources* that correspond to import *offers* in *intertie zone* $a \in A$;
- 4.1.29 $DX_h^{EM} \subseteq DX$ designates the *intertie zone* buses corresponding to *emergency energy* export transactions for hour $h \in \{1, ..., 24\}$;
- 4.1.30 $DX_h^{INP} \subseteq DX$ designates the *intertie zone* buses corresponding to inadvertent *energy* payback export transactions for hour $h \in \{1,...,24\}$;

- 4.1.31 $DI_h^{EM} \subseteq DI$ designates the *intertie zone* buses corresponding to *emergency energy* import transactions for hour $h \in \{1,...,24\}$;
- 4.1.32 $DI_h^{EMNS} \subseteq DI_h^{EM}$ designates the *intertie zone* buses corresponding to *emergency energy* import transactions that do not support *emergency energy* export transactions in hour $h \in \{1,...,24\}$;
- 4.1.33 $DI_h^{INP} \subseteq DI$ designates the *intertie zone* buses corresponding to inadvertent *energy* payback import transactions for hour $h \in \{1,...,24\}$;
- 4.1.34 F designates the set of facilities and groups of facilities for which transmission constraints may be identified;
- 4.1.35 $F_h \subseteq F$ designates the set of *facilities* whose pre-contingency limit was violated in hour h as determined by a preceding *security* assessment function iteration;
- 4.1.36 $F_{h,c} \subseteq F$ designates the set of *facilities* whose post-contingency limit for contingency c is violated in hour h as determined by a preceding *security* assessment function iteration;
- 4.1.37 $f_{h,b}^E$ designates the set of *bid* laminations for *energy* at $b \in B \cup DX \cup VB$ for hour $h \in \{1,...,24\}$;
- 4.1.38 $f_{h,b}^{10S}$ designates the set of *offer* laminations for synchronized *ten-minute operating* reserve at bus $b \in B$ for hour $h \in \{1,...,24\}$;
- 4.1.39 $J_{h,b}^{10S}$ designates the set of *reference level value* laminations for synchronized *ten*minute operating reserve at bus $b \in B$ for hour $h \in \{1, ..., 24\}$;
- 4.1.40 $f_{h,b}^{10N}$ designates the set of *offer* laminations for non-synchronized *ten-minute* operating reserve at bus $b \in B \cup DX$ for hour $h \in \{1, ..., 24\}$;
- 4.1.41 $J_{h,b}^{10N}$ designates the set of *reference level value* laminations for non-synchronized *ten*minute operating reserve at bus $b \in B$ for hour $h \in \{1, ..., 24\}$;
- 4.1.42 $J_{h,b}^{30R}$ designates the set of *offer* laminations for *thirty-minute operating reserve* at bus $b \in B \cup DX$ for hour $h \in \{1, ..., 24\}$;
- 4.1.43 $J_{h,b}^{\prime 30R}$ designates the set of *reference level value* laminations for *thirty-minute* operating reserve at bus $b \in B$ for hour $h \in \{1, ..., 24\}$;
- 4.1.44 $K_{h,b}^E$ designates the set of *offer* laminations for *energy* at bus $b \in B \cup DI \cup VO$ for hour $h \in \{1, ..., 24\}$;

- 4.1.45 $K_{h,b}^{E}$ designates the set of *reference level value* laminations for *energy* at bus $b \in B$ for hour $h \in \{1, ..., 24\}$;
- 4.1.46 $K_{h,b}^{DF} \subseteq K_{h,b}^{E}$ designates the set of *offer* laminations for *energy* corresponding to the duct firing region of a *pseudo-unit* at bus $b \in B^{PSU}$ in hour $h \in \{1, ..., 24\}$;
- 4.1.47 $K_{h,b}^{DR} \subseteq K_{h,b}^{E}$ designates the set of *offer* laminations for *energy* corresponding to the *dispatchable* region of a *pseudo-unit* at bus $b \in B^{PSU}$ in hour $h \in \{1, ..., 24\}$;
- 4.1.48 $K_{h,b}^{LTMLP}$ designates the set of *offer* laminations for *energy* quantities up to the *minimum* loading point for a non-quick start resource at bus $b \in B^{NQS}$ in hour $h \in \{1, ..., 24\}$;
- 4.1.49 $K_{h,b}^{'LTMLP}$ designates the set of *reference level value* laminations for *energy* quantities up to the *minimum loading point reference level* for a *non-quick start resource* at bus $b \in B^{NQS}$ in hour $h \in \{1, ..., 24\}$;
- 4.1.50 $K_{h,b}^{10.S}$ designates the set of *offer* laminations for synchronized *ten-minute operating* reserve at bus $b \in B$ for hour $h \in \{1, ..., 24\}$;
- 4.1.51 $K_{h,b}^{10.S}$ designates the set of *reference level value* laminations for synchronized *ten*minute operating reserve at bus $b \in B$ for hour $h \in \{1, ..., 24\}$;
- 4.1.52 $K_{h,b}^{10N}$ designates the set of *offer* laminations for non-synchronized *ten-minute* operating reserve at bus $b \in B \cup DI$ for hour $h \in \{1, ..., 24\}$;
- 4.1.53 $K_{h,b}^{10N}$ designates the set of *reference level value* laminations for non-synchronized *ten-minute operating reserve* at bus $b \in B$ for hour $h \in \{1, ..., 24\}$;
- 4.1.54 $K_{h,b}^{30R}$ designates the set of *offer* laminations for *thirty-minute operating reserve* at bus $b \in B \cup DI$ for hour $h \in \{1, ..., 24\}$;
- 4.1.55 $K_{h,b}^{80R}$ designates the set of *reference level value* laminations for *thirty-minute operating reserve* at bus $b \in B$ for hour $h \in \{1, ..., 24\}$;
- 4.1.56 L designates the set of buses where the locational marginal prices represent prices for delivery points associated with non-dispatchable generation resources and dispatchable generation resources, dispatchable loads, hourly demand response resources, price responsive loads and non-dispatchable loads;
- 4.1.57 $L_y^{NDL} \subseteq L$ designates the buses contributing to the zonal price for *non-dispatchable load* zone $y \in Y$;
- 4.1.58 $L_m^{VIRT} \subseteq L$ designates the buses contributing to the *virtual zonal price* for *virtual transaction zone* $m \in M$;

- 4.1.59 *M* designates the set of *virtual transaction zones*;
- 4.1.60 *NCA* designates the set of *narrow constrained areas*;
- 4.1.61 *DCA* designates the set of *dynamic constrained areas*;
- 4.1.62 *BCA* designates the set of broad constrained areas;
- 4.1.63 *PST* designates the set of steam turbines <u>resources</u> offered as part of a pseudo-unit;
- 4.1.64 SHE designates the set indexing the sets of dispatchable hydroelectric generation resources with a maximum daily energy limit or a minimum daily energy limit or both for a registered forebay;
- 4.1.65 *V* designates the set of *offers* and *bids* for *energy* corresponding to *virtual transactions*;
- 4.1.66 $VB \subseteq V$ designates the set of *bids* for *energy* corresponding to *virtual transactions*;
- 4.1.67 $VO \subseteq V$ designates the set of offers for energy corresponding to virtual transactions;
- 4.1.68 $V_m \subseteq V$ designates the set of *offers* and *bids* for *energy* corresponding to *virtual* transactions at virtual transaction zone $m \in M$;
- 4.1.69 $VB_m \subseteq V_m$ designates the set of *bids* for *energy* corresponding to *virtual transactions* at *virtual transaction zone* $m \in M$;
- 4.1.70 $VO_m \subseteq V_m$ designates the set of *offers* for *energy* corresponding to *virtual* transactions at virtual transaction zone $m \in M$;
- 4.1.71 Y designates the *non-dispatchable load* zones in Ontario; and
- 4.1.72 Z_{Sch} designates the set of all *intertie* limit constraints.

4.2 Market Participant Data Parameters

- 4.2.1 With respect to a *non-dispatchable generation resource* identified by bus $b \in B^{NDG}$:
 - 4.2.1.1 *QNDG*_{h,b,k} designates the maximum incremental quantity of *energy* that may be scheduled in hour $h \in \{1,...,24\}$ in association with *offer* lamination $k \in K_{h,b}^E$; and
 - 4.2.1.2 *PNDG*_{h,b,k} designates the price for the maximum incremental quantity of energy in hour $h \in \{1,...,24\}$ in association with offer lamination $k \in K_{h,b}^E$.
- 4.2.2 With respect to a *dispatchable generation resource* identified by bus $b \in B^{DG}$:

- 4.2.2.1 $MinQDG_b$ designates the minimum loading point;
- 4.2.2.2 *QDG*_{h,b,k} designates the maximum incremental quantity of *energy* above the *minimum loading point* that may be scheduled in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^E$;
- 4.2.2.3 $PDG_{h,b,k}$ designates the price for the maximum incremental quantity of energy in hour $h \in \{1, ..., 24\}$ in association with offer lamination $k \in K_{h,b}^E$;
- 4.2.2.4 *Q*10 *SDG*_{h,b,k} designates the maximum incremental quantity of synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^{10.S}$;
- 4.2.2.5 $P10SDG_{h,b,k}$ designates the price for the maximum incremental quantity of synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^{10S}$;
- 4.2.2.6 $Q10NDG_{h,b,k}$ designates the maximum incremental quantity of non-synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^{10N}$;
- 4.2.2.7 $P10NDG_{h,b,k}$ designates the price for the maximum incremental quantity of non-synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^{10N}$;
- 4.2.2.8 *Q*30*RDG*_{h,b,k} designates the maximum incremental quantity of *thirty-minute operating reserve* in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^{30R}$;
- 4.2.2.9 $P30RDG_{h,b,k}$ designates the price of the maximum incremental quantity of thirty-minute operating reserve in hour $h \in \{1, ..., 24\}$ in association with offer lamination $k \in K_{h,b}^{30R}$;
- 4.2.2.10 $ORRDG_b$ designates the maximum operating reserve ramp rate in MW per minute:
- 4.2.2.11 *NumRRDG*_{h,b} designates the number of ramp rates provided in hour h ∈ $\{1, ..., 24\}$;
- 4.2.2.12 $RmpRngMaxDG_{h,b,w}$ for $w \in \{1,...,NumRRDG_{h,b}\}$ designates the wth ramp rate break point in hour $h \in \{1,...,24\}$;
- 4.2.2.13 $URRDG_{h,b,w}$ for $w \in \{1,...,NumRRDG_{h,b}\}$ designates the ramp rate in MW per minute at which the *resource* can increase the amount of *energy* it

- supplies in hour $h \in \{1, ..., 24\}$ while operating in the range between $RmpRngMaxDG_{h,b,w-1}$ and $RmpRngMaxDG_{h,b,w}$, where $RmpRngMaxDG_{h,b,0}$ shall be equal to zero;
- 4.2.2.14 $DRRDG_{h,b,w}$ for $w \in \{1,...,NumRRDG_{i,b}\}$ designates the ramp rate in MW per minute at which the *resource* can decrease the amount of *energy* it supplies in hour $h \in \{1,...,24\}$ while operating in the range between $RmpRngMaxDG_{h,b,w-1}$ and $RmpRngMaxDG_{h,b,w}$, where $RmpRngMaxDG_{h,b,0}$ shall be equal to zero;
- 4.2.2.15 *RLP*30 $R_{h,b}$ designates the *reserve loading point* for *thirty-minute operating reserve* in hour $h \in \{1, ..., 24\}$; and
- 4.2.2.16 *RLP*10 $S_{h,b}$ designates the *reserve loading point* for synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$.
- 4.2.3 With respect to a *dispatchable non-quick start resource* identified by bus $b \in B^{NQS}$:
 - 4.2.3.1 *SUDG*_{h,b} designates the *start-up offer* in hour $h \in \{1, ..., 24\}$;
 - 4.2.3.2 *SNL*_{h,b} designates the *speed no-load offer* in hour $h \in \{1, ..., 24\}$;
 - 4.2.3.3 MGBRTDG_b designates the *minimum generation block run-time*;
 - 4.2.3.4 MGBDTDG_b designates the *minimum generation block down-time*;
 - 4.2.3.5 MaxStartsDG_b designates the *maximum number of starts per day*;
 - 4.2.3.6 RampHrs_b designates the *ramp hours to minimum loading point*;
 - 4.2.3.7 Ramp $E_{b,w}$ designates the ramp up energy to minimum loading point for $w \in \{1, ..., RampHrs_b\}$;
 - 4.2.3.8 *QLTMLP*_{h,b,k} designates the maximum incremental quantity of *energy* up to the *minimum loading point* that may be scheduled in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^{LTMLP}$;
 - 4.2.3.9 *PLTMLP*_{h,b,k} designates the price for the maximum incremental quantity of energy up to the minimum loading point that may be scheduled in hour $h \in \{1, ..., 24\}$ in association with offer lamination $k \in K_{h,b}^{LTMLP}$; and
 - 4.2.3.10 $MGODG_{h,b}$ designates the minimum generation cost to operate at *minimum loading point* in hour $h \in \{1, ..., 24\}$. This parameter is calculated as

follows:

$$MGODG_{h,b} = SNL_{h,b} + \sum_{k \in K_{b,b}^{LTMLP}} PLTMLP_{h,b,k} \cdot QLTMLP_{h,b,k}$$

- 4.2.4 With respect to an *energy limited resource* identified by bus $b \in B^{ELR}$:
 - 4.2.4.1 $MaxDEL_b$ designates the maximum daily energy limit for a single resource with or without out a registered forebay.
- 4.2.5 With respect to a *dispatchable* hydroelectric *generation resource* identified by bus $b \in B^{HE}$:
 - 4.2.5.1 *MinHMR*_{h,b} designates the *hourly must-run* value for the *resource* in hour $h \in \{1, ..., 24\}$;
 - 4.2.5.2 *MinHO*_{h,b} designates the *minimum hourly output* for the *resource* in hour $h \in \{1, ..., 24\}$;
 - 4.2.5.3 $MinDEL_b$ designates the *minimum daily energy limit* for a single *resource* with or without a registered *forebay*;
 - 4.2.5.4 $MaxStartsHE_b$ designates the maximum number of starts per day for the resource;
 - 4.2.5.5 StartMW_{b,i} for $i \in \{1, ..., NStartMW_b\}$ designates the start indication value for measuring maximum number of starts per day; a start is counted between hours h and (h+1) if the schedule increases from below StartMW_{b,i} to at or above StartMW_{b,i}; and
 - 4.2.5.6 $(ForL_{b,i}, ForU_{b,i})$ for $i \in \{1, ..., NFor_b\}$ designate the lower and upper limits of the *forbidden regions* and indicate that the *resource* cannot be scheduled between $ForL_{b,i}$ and $ForU_{b,i}$ for all $i \in \{1,..., NFor_b\}$.
- 4.2.6 With respect to multiple *dispatchable* hydroelectric *generation resources* with a registered *forebay:*
 - 4.2.6.1 *MaxSDEL*_s designates the *maximum daily energy limit* shared by all *dispatchable* hydroelectric *generation resources* in set $s \in SHE$; and
 - 4.2.6.2 *MinSDEL*_s designates the *minimum daily energy limit* shared by all *dispatchable* hydroelectric *generation resources* in set $s \in SHE$.
- 4.2.7 With respect to a *dispatchable* hydroelectric *generation resource* for which a MWh ratio was respected

- 4.2.7.1 $LNK \subseteq B_{up}^{HE} \times B_{dn}^{HE}$ designates the set of linked *dispatchable* hydroelectric generation resources, where LNK is a set with elements of the form (b_1, b_2) and $b_1 \in B_{up}^{HE}$ and $b_2 \in B_{dn}^{HE}$;
- 4.2.7.2 $Lag_{b_1,b_2} \in \{0,...,23\}$ designates the *time lag* in hours between upstream dispatchable hydroelectric generation resources $b_1 \in B_{up}^{HE}$ and downstream dispatchable hydroelectric generation resources $b_2 \in B_{dn}^{HE}$ for $(b_1,b_2) \in LNK$; and
- 4.2.7.3 *MWhRatio*_{b_1,b_2} designates the *MWh ratio* between upstream *dispatchable* hydroelectric *generation resources* $b_1 \in B_{up}^{HE}$ and downstream *dispatchable* hydroelectric *generation resources* $b_2 \in B_{dn}^{HE}$ for $(b_1,b_2) \in LNK$.
- 4.2.8 With respect to a *pseudo-unit* identified by bus $b \in B^{PSU}$:
 - 4.2.8.1 *STShareMLP_b* designates the steam turbine <u>resource's</u> share of the *minimum loading point* region;
 - 4.2.8.2 *STShareDR*_b designates the steam turbine <u>resource's</u> share of the dispatchable region;
 - 4.2.8.3 $RampCT_{b,w}$ designates the quantity of *energy* injected w hours before the *pseudo-unit* reaches its *minimum loading point* that is attributed to the combustion turbine <u>resource</u> for $w \in \{1, ..., RampHrs_b\}$; and
 - 4.2.8.4 $RampST_{b,w}$ designates the quantity of *energy* injected w hours before the *pseudo-unit* reaches its *minimum loading point* that is attributed to the steam turbine resource for $w \in \{1, ..., RampHrs_b\}$.
- 4.2.9 With respect to a *dispatchable load* identified by bus $b \in B^{DL}$:
 - 4.2.9.1 *QDL*_{h,b,j} designates the maximum incremental quantity of *energy* that may be scheduled in hour $h \in \{1, ..., 24\}$ in association with *bid* lamination $j \in J_{h,b}^E$;
 - 4.2.9.2 $PDL_{h,b,j}$ designates the price for the maximum incremental quantity of energy in hour $h \in \{1, ..., 24\}$ in association with bid lamination $j \in J_{h,b}^E$;
 - 4.2.9.3 $Q10SDL_{h,b,j}$ designates the maximum incremental quantity of synchronized *ten-minute operating reserve* that may be scheduled in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $j \in J_{h,b}^{10S}$;

- 4.2.9.4 $P10SDL_{h,b,j}$ designates the price for the maximum incremental quantity of synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $j \in J_{h,b}^{10S}$;
- 4.2.9.5 $Q10NDL_{h,b,j}$ designates the maximum incremental quantity of non-synchronized *ten-minute operating reserve* that may be scheduled in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $j \in f_{h,b}^{10N}$;
- 4.2.9.6 $P10NDL_{h,b,j}$ designates the price for the maximum incremental quantity of non-synchronized ten-minute operating reserve in hour $h \in \{1, ..., 24\}$ in association with offer lamination $j \in J_{h,b}^{10N}$;
- 4.2.9.7 *Q*30 *RDL*_{h,b,j} designates the maximum incremental quantity of *thirty-minute operating reserve* that may be scheduled in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $j \in \beta_{h,b}^{0,R}$;
- 4.2.9.8 $P30RDL_{h,b,j}$ designates the price for the maximum incremental quantity of thirty-minute operating reserve in hour $h \in \{1, ..., 24\}$ in association with offer lamination $j \in \beta_{h,b}^{00R}$;
- 4.2.9.9 $ORRDL_b$ designates the *operating reserve* ramp rate in MW per minute for reductions in load consumption;
- 4.2.9.10 *NumRRDL*_{h,b} designates the number of ramp rates provided in hour h ∈ $\{1,...,24\}$;
- 4.2.9.11 $RmpRngMaxDL_{h,b,w}$ for $w \in \{1,...,NumRRDL_{h,b}\}$ designates the wth ramp rate break point in hour $h \in \{1,...,24\}$;
- 4.2.9.12 $URRDL_{h,b,w}$ for $w \in \{1,...,NumRRDL_{h,b}\}$ designates the ramp rate in MW per minute at which the *dispatchable load* can increase its amount of *energy* consumption in hour $h \in \{1, ..., 24\}$ while operating in the range between $RmpRngMaxDL_{h,b,w-1}$ and $RmpRngMaxDL_{h,b,w}$, where $RmpRngMaxDL_{h,b,0}$ shall be equal to zero;
- 4.2.9.13 $DRRDL_{h,b,w}$ for $w \in \{1,...,NumRRDL_{h,b}\}$ designates the ramp rate in MW per minute at which the *dispatchable load* can decrease its amount of energy consumption in hour $h \in \{1,...,24\}$ while operating in the range between $RmpRngMaxDL_{h,b,w-1}$ and $RmpRngMaxDL_{h,b,w}$, where $RmpRngMaxDL_{h,b,0}$ shall be equal to zero; and
- 4.2.9.14 *QDLFIRM*_{h,b} designates the quantity of *energy* that is *bid* at the *maximum market clearing price* in hour $h \in \{1, ..., 24\}$.

- 4.2.10 With respect to an hourly demand response resource identified by bus $b \in B^{HDR}$:
 - 4.2.10.1 *QHDR*_{h,b,j} designates the maximum incremental quantity of reduction in energy consumption that may be scheduled in hour $h \in \{1, ..., 24\}$ in association with *bid* lamination $j \in J_{h,b}^E$;
 - 4.2.10.2 *PHDR*_{h,b,j} designates the price for the maximum incremental quantity of reduction in *energy* consumption for hour $h \in \{1, ..., 24\}$ in association with *bid* lamination $j \in J_{h,b}^E$;
 - 4.2.10.3 *URRHDR_b* designates the maximum rate in MW per minute at which the *hourly demand response resource* can decrease its amount of *energy* consumption; and
 - 4.2.10.4 *DRRHDR_b* designates the maximum rate in MW per minute at which the *hourly demand response resource* can increase its amount of *energy* consumption.
- 4.2.11 With respect to a *price responsive load* identified by bus $b \in B^{PRL}$:
 - 4.2.11.1 $QPRL_{h,b,j}$ designates the maximum incremental quantity of *energy* that may be scheduled in hour $h \in \{1, ..., 24\}$ in association with *bid* lamination $j \in J_{h,b}^E$;
 - 4.2.11.2 *PPRL*_{h,b,j} designates the price for the maximum incremental quantity of energy in hour $h \in \{1, ..., 24\}$ in association with bid lamination $j \in J_{h,b}^E$; and
 - 4.2.11.3 *QPRLFIRM*_{h,b} designates the quantity of *energy* that is *bid* at *MMCP* in hour $h \in \{1, ..., 24\}$.
- 4.2.12 With respect to a *virtual transaction*:
 - 4.2.12.1 $QVB_{h,v,j}$ designates the maximum incremental quantity of *energy* that may be scheduled in hour $h \in \{1, ..., 24\}$ from a *virtual zonal resource* $v \in VB$ in association with *bid* lamination $j \in J_{h,v}^E$;
 - 4.2.12.2 $PVB_{h,v,j}$ designates the price for the maximum incremental quantity of energy in hour $h \in \{1, ..., 24\}$ from a virtual zonal resource $v \in VB$ in association with bid lamination $j \in J_{h,v}^E$;
 - 4.2.12.3 $QVO_{h,v,k}$ designates the maximum incremental quantity of *energy* that may be scheduled in hour $h \in \{1, ..., 24\}$ from a *virtual zonal resource* $v \in VO$ in association with *offer* lamination $k \in K_{h,v}^E$; and

- 4.2.12.4 $PVO_{h,v,k}$ designates the price for the maximum incremental quantity of energy in hour $h \in \{1, ..., 24\}$ from a virtual zonal resource $v \in VO$ in association with offer lamination $k \in K_{h,v}^E$.
- 4.2.13 With respect to a boundary entity resource import from intertie zone bus $d \in DI$, where the locational marginal price represents the price for the intertie metering point:
 - 4.2.13.1 *QIG*_{h,d,k} designates the maximum incremental quantity of *energy* that may be scheduled to import in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,d}^E$;
 - 4.2.13.2 $PIG_{h,d,k}$ designates the price for the maximum incremental quantity of energy that may be scheduled to import in hour $h \in \{1, ..., 24\}$ in association with offer lamination $k \in K_{h,d}^E$;
 - 4.2.13.3 $Q10NIG_{h,d,k}$ designates the maximum incremental quantity of non-synchronized *ten-minute operating reserve* that may be scheduled to provide in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,d}^{10N}$.
 - 4.2.13.4 $P10NIG_{h,d,k}$ designates the price for the maximum incremental quantity of non-synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,d}^{10N}$;
 - 4.2.13.5 *Q*30 $RIG_{h,d,k}$ designates the maximum incremental quantity of *thirty-minute operating reserve* that may be scheduled to provide in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,d}^{30R}$; and
 - 4.2.13.6 $P30RIG_{h,d,k}$ designates the price for the maximum incremental quantity of thirty-minute operating reserve in hour $h \in \{1, ..., 24\}$ in association with offer lamination $k \in K_{h,d}^{30R}$.
- 4.2.14 With respect to a boundary entity resource export to intertie zone bus $d \in DX$, where the locational marginal price represents the price for the intertie metering point:
 - 4.2.14.1 *QXL*_{h,d,j} designates the maximum incremental quantity of *energy* that may be scheduled to export in hour $h \in \{1, ..., 24\}$ in association with *bid* lamination $j \in f_{h,d}^E$;
 - 4.2.14.2 $PXL_{h,d,j}$ designates the price for the maximum incremental quantity of energy that may be scheduled to export in hour $h \in \{1, ..., 24\}$ in association with bid lamination $j \in f_{h,d}^E$;

- 4.2.14.3 $Q10NXL_{h,d,j}$ designates the maximum incremental quantity of non-synchronized *ten-minute operating reserve* that may be scheduled to provide in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $j \in J_{h,d}^{10N}$;
- 4.2.14.4 $P10NXL_{h,d,j}$ designates the price for the maximum incremental quantity of non-synchronized ten-minute operating reserve in hour $h \in \{1, ..., 24\}$ in association with offer lamination $j \in J_{h,d}^{10N}$;
- 4.2.14.5 *Q*30 *RXL*_{h,d,j} designates the maximum incremental quantity of *thirty-minute* operating reserve that may be scheduled to provide in hour $h \in \{1, ..., 24\}$ in association with offer lamination $j \in J_{h,d}^{80R}$; and
- 4.2.14.6 $P30RXL_{h,d,j}$ designates the price for the maximum incremental quantity of thirty-minute operating reserve in hour $h \in \{1, ..., 24\}$ in association with offer lamination $j \in \beta_{h,d}^{0R}$.
- 4.2.15 With respect to a wheeling through transaction linked wheeling through transaction:
 - 4.2.15.1 $L_h \subseteq DX \times DI$ designates the set of linked boundary entity resource import and export buses corresponding to <u>linked</u> wheeling through transactions, where L_h is a set with elements of the form (dx, di) and $dx \in DX$ and $di \in DI$.

4.3 IESO Data Parameters

- 4.3.1 Variable Generation Forecast
 - 4.3.1.1 $FG_{h,b}$ designates the *IESO*'s centralized *variable generation* forecast for a *variable generation resource* identified by bus $b \in B^{VG}$ in hour $h \in \{1,...,24\}$.
- 4.3.2 Variable Generation Tie-Breaking
 - 4.3.2.1 *NumVG* designates the number of *variable generation resources* in the daily *dispatch* order; and
 - 4.3.2.2 $TBM_b \in \{1, ..., NumVG\}$ designates the tie-breaking modifier for the variable generation resource at bus $b \in B^{VG}$.
- 4.3.3 Operating Reserve Requirements
 - 4.3.3.1 $TOT10S_h$ designates the synchronized ten-minute operating reserve requirement;
 - 4.3.3.2 $TOT10R_h$ designates the total ten-minute operating reserve requirement;

- 4.3.3.3 $TOT30R_h$ designates the thirty-minute operating reserve requirement;
- 4.3.3.4 *ORREG* designates the set of regions for which regional *operating reserve* limits have been defined;
- 4.3.3.5 *REGMin*10 $R_{h,r}$ designates the minimum requirement for total *ten-minute* operating reserve in region $r \in ORREG$ in hour $h \in \{1, ..., 24\}$;
- 4.3.3.6 *REGMin*30 $R_{h,r}$ designates the minimum requirement for *thirty-minute* operating reserve in region $r \in ORREG$ in hour $h \in \{1, ..., 24\}$;
- 4.3.3.7 *REGMax*10 $R_{h,r}$ designates the maximum amount of total *ten-minute* operating reserve that may be scheduled in region $r \in ORREG$ in hour $h \in \{1, ..., 24\}$; and
- 4.3.3.8 REGMax30 $R_{h,r}$ designates the maximum amount of thirty-minute operating reserve that may be scheduled in region $r \in ORREG$ in hour $h \in \{1, ..., 24\}$.

4.3.4 Intertie Limits

- 4.3.4.1 EnCoeff_{a,z} designates the coefficient for calculating the contribution of scheduled energy flows and operating reserve inflows for intertie zone $a \in A$, which is part of intertie limit constraint $z \in Z_{Sch}$. A coefficient of +1 shall describe flows into Ontario while a coefficient of -1 shall describe flows out of Ontario;
- 4.3.4.2 $MaxExtSch_{h,z}$ designates the maximum flow limit for *intertie* flow constraint $z \in Z_{Sch}$ in hour $h \in \{1, ..., 24\}$;
- 4.3.4.3 *ExtDSC*_h designates the net interchange scheduling limit for when the net flows over all *interties* from hour (h-1) to hour h decrease; and
- 4.3.4.4 ExtUSC_h designates the net interchange scheduling limit for when the net flows over all *interties* from hour (h-1) to hour h increase.

4.3.5 Resource Minimum and Maximum Constraints

4.3.5.1 Where applicable the minimum or maximum output of a *dispatchable* generation resource or a non-dispatchtable generation resource and minimum or maximum consumption of a dispatchable load may be limited due to reliability constraints, applicable contracted ancillary services, outages, derates, and other constraints, such that:

- 4.3.5.1.1 *MinDL*_{h,b} designates the most restrictive minimum consumption limit for the *dispatchable load* in hour h at bus $b \in B^{DL}$;
- 4.3.5.1.2 *MaxDL*_{h,b} designates the most restrictive maximum consumption limit for the *dispatchable load* in hour h at bus $b \in B^{DL}$:
- 4.3.5.1.3 *MinNDG*_{h,b} designates the most restrictive minimum output limit for the *non-dispatchable generation resource* in hour h at bus $b \in B^{NDG}$;
- 4.3.5.1.4 *MaxNDG*_{h,b} designates the most restrictive maximum output limit for the *non-dispatchable generation resource* in hour h at bus $b \in B^{NDG}$;
- 4.3.5.1.5 *MinDG*_{h,b} designates the most restrictive minimum output limit for the *dispatchable generation resource* in hour h at bus $b \in B^{DG}$;
- 4.3.5.1.6 *MaxDG*_{h,b} designates the most restrictive maximum output limit for the *dispatchable generation resource* in hour h at bus $b \in B^{DG}$:
- 4.3.5.1.7 *MaxMLP*_{h,b} designates the maximum output limit in hour h for the *minimum loading point* region of a *pseudo-unit* at bus $b \in B^{PSU}$:
- 4.3.5.1.8 *MaxDR*_{h,b} designates the maximum output limit in hour h for the *dispatchable* region of a *pseudo-unit* at bus $b \in B^{PSU}$; and
- 4.3.5.1.9 $MaxDF_{h,b}$ designates the maximum output limit in hour h for the duct firing region of a *pseudo-unit* at bus $b \in B^{PSU}$.

4.3.6 Constraint Violation Penalties

- 4.3.6.1 ($PLdViolSch_{h,i}$, $QLdViolSch_{h,i}$) for $i \in \{1, ..., N_{LdViol_h}\}$ designate the price-quantity segments of the penalty curve for under generation used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.2 $(PLdViolPrc_{h,i}, QLdViolPrc_{h,i})$ for $i \in \{1, ..., N_{LdViol_h}\}$ designate the price-quantity segments of the penalty curve for under generation used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing

- algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.3 ($PGenViolSch_{h,i}$, $QGenViolSch_{h,i}$) for $i \in \{1, ..., N_{GenViol_h}\}$ designate the price-quantity segments of the penalty curve for over generation used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.4 ($PGenViolPrc_{h,i}$, $QGenViolPrc_{h,i}$) for $i \in \{1, ..., N_{GenViol_h}\}$ designate the price-quantity segments of the penalty curve for over generation used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.5 $(P10SViolSch_{h,i}, Q10SViolSch_{h,i})$ for $i \in \{1, ..., N_{10SViol_h}\}$ designate the price-quantity segments of the penalty curve for the synchronized *ten-minute operating reserve* requirement used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.6 (P10 SViolPrc_{h,i}, Q10 SViolPrc_{h,i}) for i ∈ {1,..., N_{10 SViol_h}} designate the price-quantity segments of the penalty curve for the synchronized tenminute operating reserve requirement used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.7 $(P10RViolSch_{h,i}, Q10RViolSch_{h,i})$ for $i \in \{1, ..., N_{10RViol_h}\}$ designate the price-quantity segments of the penalty curve for the total *ten-minute* operating reserve requirement used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.8 ($P10RViolPrc_{h,i}$, $Q10RViolPrc_{h,i}$) for $i \in \{1, ..., N_{10RViol_h}\}$ designate the price-quantity segments of the penalty curve for the total *ten-minute* operating reserve requirement used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.9 ($P30RViolSch_{h,i}$, $Q30RViolSch_{h,i}$) for $i \in \{1, ..., N_{30RViol_h}\}$ designate the price-quantity segments of the penalty curve for the total *thirty-minute* operating reserve requirement and, when applicable, the flexibility

- operating reserve requirement used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.10 ($P30RViolPrc_{h,i}$, $Q30RViolPrc_{h,i}$) for $i \in \{1, ..., N_{30RViol_h}\}$ designate the price-quantity segments of the penalty curve for the total *thirty-minute* operating reserve requirement and, when applicable, the flexibility operating reserve requirement used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.11 ($PREG10RViolSch_{h,i}$, $QREG10RViolSch_{h,i}$) for $i \in \{1, ..., N_{REG10RViol_h}\}$ designate the price-quantity segments of the penalty curve for area total ten-minute operating reserve minimum requirements used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.12 ($PREG10RViolPrc_{h,i}$, $QREG10RViolPrc_{h,i}$) for $i \in \{1, ..., N_{REG10RViol_h}\}$ designate the price-quantity segments of the penalty curve for area total ten-minute operating reserve minimum requirements used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.13 ($PREG30RViolSch_{h,i}$, $QREG30RViolSch_{h,i}$) for $i \in \{1, ..., N_{REG30RViol_h}\}$ designate the price-quantity segments of the penalty curve for area *thirty-minute operating reserve* minimum requirements used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.14 ($PREG30RViolPrc_{h,i}$, $QREG30RViolPrc_{h,i}$) for $i \in \{1, ..., N_{REG30RViol_h}\}$ designate the price-quantity segments of the penalty curve for area *thirty-minute operating reserve* minimum requirements used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.15 $(PXREG10RViolSch_{h,i}, QXREG10RViolSch_{h,i})$ for $i \in \{1, ..., N_{XREG10RViol_h}\}$ designate the price-quantity segments of the penalty curve for area total *ten-minute operating reserve* maximum restrictions used by the As-Offered Scheduling algorithm in section 8,

- Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.16 $(PXREG10RViolPrc_{h,i},QXREG10RViolPrc_{h,i})$ for $i \in \{1,...,N_{XREG10RViol_h}\}$ designate the price-quantity segments of the penalty curve for area total ten-minute operating reserve maximum restrictions used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.17 $(PXREG30RViolSch_{h,i}, QXREG30RViolSch_{h,i})$ for $i \in \{1, ..., N_{XREG30RViol_h}\}$ designate the price-quantity segments of the penalty curve for area total thirty-minute operating reserve maximum restrictions used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.18 $(PXREG30RViolPrc_{h,i},QXREG30RViolPrc_{h,i})$ for $i \in \{1, ..., N_{XREG30RViol_b}\}$ designate the price-quantity segments of the penalty curve for area total thirty-minute operating reserve maximum restrictions used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- $(PPreITLViolSch_{f,h,i}, QPreITLViolSch_{f,h,i})$ for $i \in \{1, ..., N_{PreITLViol_{f,h}}\}$ 4.3.6.19 designate the price-quantity segments of the penalty curve for exceeding the pre-contingency limit of the transmission constraint for facility $f \in F$ used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- $(PPreITLViolPrc_{f,h,i}, QPreITLViolPrc_{f,h,i})$ for $i \in \{1, ..., N_{PreITLViolf_h}\}$ 4.3.6.20 designate the price-quantity segments of the penalty curve for exceeding the pre-contingency limit of the transmission constraint for facility $f \in F$ used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- (*PITLViolSch_{c,f,h,i}*, *QITLViolSch_{c,f,h,i}*) for $i \in \{1, ..., N_{ITLViol_{c,f,h}}\}$ designate 4.3.6.21 the price-quantity segments of the penalty curve for exceeding the contingency $c \in C$ post-contingency limit of the transmission constraint for facility $f \in F$ used by As-Offered Scheduling algorithm in section 8,

- Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.22 ($PITLViolPrc_{C,f,h,i}$, $QITLViolPrc_{C,f,h,i}$) for $i \in \{1, ..., N_{ITLViol_{C,f,h}}\}$ designate the price-quantity segments of the penalty curve for exceeding the contingency $c \in C$ post-contingency limit of the transmission constraint for facility $f \in F$ used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.23 ($PPreXTLViolSch_{z,h,i}$) $QPreXTLViolSch_{z,h,i}$) for $i \in \{1, ..., N_{PreXTLViol_{z,h}}\}$ designate the price-quantity segments of the penalty curve for exceeding the flow limit specified by $z \in Z_{Sch}$ used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 20;
- 4.3.6.24 ($PPreXTLViolPrc_{z,h,i}$) QPreXTLViolPrc_{z,h,i}) for $i \in \{1, ..., N_{PreXTLViol_{z,h}}\}$ designate the price-quantity segments of the penalty curve for exceeding the flow limit specified by $z \in Z_{Sch}$ used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.25 ($PNIUViolSch_{h,i}$, $QNIUViolSch_{h,i}$) for $i \in \{1, ..., N_{NIUViol_h}\}$ designate the price-quantity segments of the penalty curve for exceeding the hour h net interchange increase constraint between hours (h-1) and h used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.26 ($PNIUViolPrc_{h,i}, QNIUViolPrc_{h,i}$) for $i \in \{1, ..., N_{NIUViol_h}\}$ designate the price-quantity segments of the penalty curve for exceeding the hour h net interchange increase constraint between hours (h-1) and h used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.27 $(PNIDViolSch_{h,i}, QNIDViolSch_{h,i})$ for $i \in \{1, ..., N_{NIDViol_h}\}$ designate the price-quantity segments of the penalty curve for exceeding the hour h net interchange decrease constraint between hours (h-1) and h used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in

- section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.28 ($PNIDViolPrc_{h,i}$, $QNIDViolPrc_{h,i}$) for $i \in \{1, ..., N_{NIDViol_h}\}$ designate the price-quantity segments of the penalty curve for exceeding the hour h net interchange decrease constraint between hours (h-1) and h used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.29 ($PMaxDelViolSch_{h,i}$, $QMaxDelViolSch_{h,i}$) for $i \in \{1, ..., N_{MaxDelViol_h}\}$ designate the price-quantity segments of the penalty curve for exceeding a resource's maximum daily energy limit used by As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.30 ($PMaxDelViolPrc_{h,i}$, $QMaxDelViolPrc_{h,i}$) for $i \in \{1, ..., N_{MaxDelViol_h}\}$ designate the price-quantity segments of the penalty curve for exceeding a resource's maximum daily energy limit used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.31 ($PMinDelViolSch_{h,i}$, $QMinDelViolSch_{h,i}$) for $i \in \{1, ..., N_{MinDelViol_h}\}$ designate the price-quantity segments of the penalty curve for underscheduling a resource's minimum daily energy limit used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.32 ($PMinDelViolPrc_{h,i}$, $QMinDelViolPrc_{h,i}$) for $i \in \{1, ..., N_{MinDelViol_h}\}$ designate the price-quantity segments of the penalty curve for underscheduling a resource's minimum daily energy limit used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.33 ($PSMaxDelViolSch_{h,i}$, $QSMaxDelViolSch_{h,i}$) for $i \in \{1, ..., N_{SMaxDelViol_h}\}$ designate the price-quantity segments of the penalty curve for exceeding a shared maximum daily energy limit used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;

- 4.3.6.34 ($PSMaxDelViolPrc_{h,i}$, $QSMaxDelViolPrc_{h,i}$) for $i \in \{1, ..., N_{MaxDelViol_h}\}$ designate the price-quantity segments of the penalty curve for exceeding a shared maximum daily energy limit used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.35 ($PSMinDelViolSch_{h,i}$, $QSMinDelViolSch_{h,i}$) for $i \in \{1, ..., N_{SMinDelViol_h}\}$ designate the price-quantity segments of the penalty curve for underscheduling a shared $minimum\ daily\ energy\ limit$ used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.36 ($PSMinDelViolPrc_{h,i}$, $QSMinDelViolPrc_{h,i}$) for $i \in \{1, ..., N_{SMinDelViol_h}\}$ designate the price-quantity segments of the penalty curve for underscheduling a shared *minimum daily energy limit* used by the As-Offered Pricing algorithm in section 9, Reference Level Pricing algorithm in section 13, Mitigated Pricing algorithm in section 16, and DAM Pricing algorithm in section 21;
- 4.3.6.37 ($POGenLnkViolSch_{h,i}$, $QOGenLnkViolSch_{h,i}$) for $i \in \{1, ..., N_{OGenLnkViol_h}\}$ designate the price-quantity segments of the penalty curve for over generation on a downstream resource used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20;
- 4.3.6.38 (PUGenLnkViolSch_{h,i}, QUGenLnkViolSch_{h,i}) for *i* ∈ {1,...,N_{UGenLnkViolh}} designate the price-quantity segments of the penalty curve for under generation on a downstream *resource* used by the As-Offered Scheduling algorithm in section 8, Reference Level Scheduling algorithm in section 12, Mitigated Scheduling algorithm in section 15, Reliability Scheduling algorithm in section 18, and DAM Scheduling algorithm in section 20; and
- 4.3.6.39 *NISLPen* designates the net interchange scheduling limit constraint violation penalty price for *locational marginal pricing*.

4.3.7 Price Bounds

- 4.3.7.1 *EngyPrcCeil* designates and is equal to the *maximum market clearing* price for *energy*;
- 4.3.7.2 *EngyPrcFlr* designates and is equal to the *settlement floor price*;

- 4.3.7.3 *ORPrcCeil* designates and is equal to the *maximum operating reserve* price for all classes of *operating reserve*; and
- 4.3.7.4 *ORPrcFlr* designates the minimum price for all classes of *operating* reserve and is equal to \$0.

4.3.8 Ex-ante Market Power Mitigation

- 4.3.8.1 *BCACondThresh* designates the threshold for the congestion component of a *resource's locational marginal price* for *energy* and is equal to \$25/MWh;
- 4.3.8.2 *IBPThresh* designates the *intertie border price* threshold for *energy* and is equal to \$100/MWh;
- 4.3.8.3 *ORGCondThresh* designates the global market power condition threshold for a *resource's locational marginal price* for *operating reserve* and is equal to \$15/MW;
- 4.3.8.4 *PDGRef*_{h,b,k'} designates the *reference level value* for *energy* lamination $k' \in K_{h,b}^{\prime E}$ for the *resource* at bus $b \in B^{DG}$ in hour $h \in \{1,...,24\}$;
- 4.3.8.5 $P10SDGRef_{h,b,k'}$ designates the *reference level value* for synchronized *ten*minute operating reserve lamination $k' \in K_{h,b}^{10S}$ for the *resource* at bus $b \in B^{DG}$ in hour $h \in \{1,...,24\}$;
- 4.3.8.6 $P10NDGRef_{h,b,k'}$ designates the *reference level value* for non-synchronized *ten-minute operating reserve* lamination $k' \in K_{h,b}^{10N}$ for the *resource* at bus $b \in B^{DG}$ in hour $h \in \{1,...,24\}$;
- 4.3.8.7 $P30RDGRef_{h,b,k'}$ designates the *reference level value* for *thirty-minute* operating reserve lamination $k' \in K_{h,b}^{'30R}$ for the *resource* at bus $b \in B^{DG}$ in hour $h \in \{1,...,24\}$;
- 4.3.8.8 $P10SDLRef_{h,b,j'}$ designates the *reference level value* for synchronized *ten*minute operating reserve lamination $j' \in J_{h,b}^{10S}$ for the *resource* at bus $b \in B^{DL}$ in hour $h \in \{1,...,24\}$;
- 4.3.8.9 $P10NDLRef_{h,b,j'}$ designates the *reference level value* for non-synchronized ten-minute operating reserve lamination $j' \in J_{h,b}^{10N}$ for the *resource* at bus $b \in B^{DL}$ in hour $h \in \{1,...,24\}$;
- 4.3.8.10 $P30RDLRef_{h,b,j'}$ designates the reference level value for thirty-minute operating reserve lamination $j' \in J_{h,b}^{'30R}$ for the resource at bus $b \in B^{DG}$ in hour $h \in \{1,...,24\}$

- 4.3.8.11 *SUDGRef*_{h,b} designates the *reference level value* for the *start-up offer* for the *resource* at bus $b \in B^{NQS}$ in hour $h \in \{1, ..., 24\}$;
- 4.3.8.12 *SNLRef*_{h,b} designates the *reference level value* for the *speed no-load offer* for the *resource* at bus $b \in B^{NQS}$ in hour $h \in \{1,...,24\}$;
- 4.3.8.13 *PLTMLPRef*_{h,b,k'} designates the *reference level value* for the *energy* up to the *minimum loading point reference level* lamination $k' \in K_{h,b}^{'LTMLP}$ of the *offer* for the *resource* at bus $b \in B^{DG}$ in hour $h \in \{1,...,24\}$;
- 4.3.8.14 *CTEnThresh*1^{NCA} designates the conduct threshold for a *resource* in a *narrow constrained area* as a percent increase above the *reference level value* of the *energy offer* for the *resource* and is equal to 50%;
- 4.3.8.15 *CTEnThresh*2^{NCA} designates the conduct threshold for a *resource* in a *narrow constrained area* as a \$/MWh increase above the *reference level value* of the *energy offer* for the *resource* and is equal to \$25/MWh;
- 4.3.8.16 *CTSUThresh*^{NCA} designates the conduct threshold for a *resource* in a *narrow constrained area* as a percent increase above the *reference level value* of the *start-up offer* for the *resource* and is equal to 25%;
- 4.3.8.17 *CTSNLThresh*^{NCA} designates the conduct threshold for a *resource* in a *narrow constrained area* as a percent increase above the *reference level* value of the *speed no-load offer* for the *resource* and is equal to 25%;
- 4.3.8.18 *CTEnThresh*1^{DCA} designates the conduct threshold for a *resource* in a *dynamic constrained area* as a percent increase above the *reference level value* of the *energy offer* for the *resource* and is equal to 50%;
- 4.3.8.19 *CTEnThresh*2^{DCA} designates the conduct threshold for a *resource* in a *dynamic constrained area* as a \$/MWh increase above the *reference level* value of the *energy offer* for the *resource* and is equal to \$25/MWh;
- 4.3.8.20 *CTSUThresh*^{DCA} designates the conduct threshold for a *resource* in a *dynamic constrained area* as a percent increase above the *reference level* value of the *start-up offer* for the *resource* and is equal to 25%;
- 4.3.8.21 *CTSNLThresh*^{DCA} designates the conduct threshold for a *resource* in a *dynamic constrained area* as a percent increase above the *reference level* value of the *speed no-load offer* for the *resource* and is equal to 25%;
- 4.3.8.22 *CTEnThresh*1^{BCA} designates the conduct threshold for a *resource* in a broad constrained area as a percent increase above the *reference level value* of the *energy offer* for the *resource* and is equal to 300%;

- 4.3.8.23 *CTEnThresh*2^{BCA} designates the conduct threshold for a *resource* in a broad constrained area as a \$/MWh increase above the *reference level value* of the *energy offer* for the *resource* and is equal to \$100/MWh;
- 4.3.8.24 *CTSUThresh*^{BCA} designates the conduct threshold for a *resource* in a broad constrained area as a percent increase above the *reference level value* of the *start-up offer* for the *resource* and is equal to 100%;
- 4.3.8.25 *CTSNLThresh*^{BCA} designates the conduct threshold for a *resource* in a broad constrained area as a percent increase above the *reference level* value of the *speed no-load offer* for the *resource* and is equal to 100%;
- 4.3.8.26 *CTEnThresh*1 ^{GMP} designates the global market power conduct threshold for a *resource* as a percent increase above the *reference level value* of the *energy offer* for the *resource* and is equal to 300%;
- 4.3.8.27 *CTEnThresh*2^{GMP} designates the global market power conduct threshold for a *resource* as a \$/MWh increase above the *reference level value* of the *energy offer* for the *resource* and is equal to \$100 MW/h;
- 4.3.8.28 *CTSUThresh*^{GMP} designates the global market power conduct threshold for a *resource* as a percent increase above the *reference level value* of the *start-up offer* for the *resource* and is equal to 100%;
- 4.3.8.29 *CTSNLThresh*^{GMP} designates the global market power conduct threshold for a *resource* as a percent increase above the *reference level value* of the *speed no-load offer* for the *resource* and is equal to 100%;
- 4.3.8.30 *CTORThresh*1 ^{ORL} designates the local market power conduct threshold for a *resource* as a percent increase above the *reference level value* of the *operating reserve offer* for the *resource* and is equal to 10%;
- 4.3.8.31 *CTORThresh*2^{ORL} designates the local market power conduct threshold for a *resource* as a \$/MW increase above the *reference level value* of the *operating reserve offer* for the *resource* and is equal to \$25/MW;
- 4.3.8.32 *CTEnThresh*1 ^{ORL} designates the local market power conduct threshold for *energy* to *minimum loading point* for a *resource* as a percent increase above the *reference level value* of the *offer* for *energy* up to the *minimum loading point* for the *resource* and is equal to 10%;
- 4.3.8.33 *CTEnThresh*2 ^{ORL} designates the local maketmarket power conduct threshold for *energy* to *minimum loading point* conduct threshold for a resource as a \$/MW increase above the reference level value of the energy for energy up to the minimum loading point for the resource and is equal to \$25/MW;

- 4.3.8.34 *CTSUThresh*^{ORL} designates the local market power conduct threshold for a *resource* as a percent increase above the *reference level value* of the *start-up offer* for the *resource* and is equal to 10%;
- 4.3.8.35 *CTSNLThresh*^{ORL} designates the local market power conduct threshold for a *resource* as a percent increase above the *reference level value* of the *speed no-load offer* for the *resource* and is equal to 10%;
- 4.3.8.36 *CTORThresh*1 ^{ORG} designates the global market power conduct threshold for a *resource* as a percent increase above the *reference level value* of the *operating reserve offer* for the *resource* and is equal to 50%;
- 4.3.8.37 *CTORThresh*2^{ORG} designates the global market power conduct threshold for a *resource* as a \$/MW increase above the *reference level value* of the *operating reserve offer* for the *resource* and is equal to \$25/MW;
- 4.3.8.38 *CTEnThresh*1^{ORG} designates the global market power conduct threshold for *energy* to *minimum loading point* for a *resource* as a percent increase above the *reference level value* of the *offer* for *energy* up to the *minimum loading point* for the *resource* and is equal to 50%;
- 4.3.8.39 *CTEnThresh*2^{ORG} designates the global market power conduct threshold for *energy* to *minimum loading point* for a *resource* as a \$/MW increase above the *reference level value* of the *offer* for *energy* up to the *minimum loading point* for the *resource* and is equal to \$25/MW;
- 4.3.8.40 *CTSUThresh*^{ORG} designates the global market power conduct threshold for a *resource* as a percent increase above the *reference level value* of the *start-up offer* for the *resource* and is equal to 25%;
- 4.3.8.41 *CTSNLThresh*^{ORG} designates the global market power conduct threshold for a *resource* as a percent increase above the *reference level value* of the *speed no-load offer* for the *resource* and is equal to 25%;
- 4.3.8.42 *CTEnMinOffer* designates the minimum price for the *offer* lamination for *energy* to be included in the Conduct Test. *Offer* laminations for *energy* below this value are excluded from the Conduct Test and is equal to \$25/MWh;
- 4.3.8.43 *CTORMinOffer* designates the minimum price for the *offer* lamination for *operating reserve* to be included in the Conduct Test. *Offer* laminations for *operating reserve* below this value are excluded from the Conduct Test and is equal to \$5/MW;
- 4.3.8.44 *ITThresh*1^{NCA} designates the price impact threshold for a *resource* in a *narrow constrained area* as a percent increase in the *energy locational*

- marginal price output from section 9 above the energy locational marginal price output from section 13 and is equal to 50%;
- 4.3.8.45 *ITThresh*2^{NCA} designates the price impact threshold for a *resource* in a *narrow constrained area* as a \$/MWh increase in the *energy locational marginal price* output from section 9 above the *energy locational marginal price* output from section 13 and is equal to \$25/MWh;
- 4.3.8.46 *ITThresh*1^{DCA} designates the price impact threshold for a *resource* in a *dynamic constrained area* as a percent increase in the *energy locational marginal price* output from section 9 above the *energy locational marginal price* output from section 13 and is equal to 50%;
- 4.3.8.47 *ITThresh*2^{DCA} designates the price impact threshold for a *resource* in a *dynamic constrained area* as a \$/MWh increase in the *energy locational marginal price* output from section 9 above the *energy locational marginal price* output from section 13 and is equal to \$25/MWh;
- 4.3.8.48 *ITThresh*1^{BCA} designates the price impact threshold for a *resource* in a broad constrained area as a percent increase in the *energy locational marginal price* output from section 9 above the *energy locational marginal price* output from section 13 and is equal to 100%;
- 4.3.8.49 *ITThresh*2^{BCA} designates the price impact threshold for a *resource* in a broad constrained area as a \$/MWh increase in the *energy locational marginal price* output from section 9 above the *energy locational marginal price* output from section 13 and is equal to\$50/MWh;
- 4.3.8.50 *ITThresh*1 *GMP* designates the global market power price impact threshold for a *resource* as a percent increase in the *energy locational marginal price* output from section 9 above the *energy locational marginal price* output from section 13 and is equal to 100%;
- 4.3.8.51 *ITThresh*2 *GMP* designates the global market power price impact threshold for a *resource* as a \$/MWh increase in the *energy locational marginal price* output from section 9 above the *energy locational marginal price* output from section 13 and is equal to \$50/MWh;
- 4.3.8.52 *ITThresh*1^{ORG} designates the global market power price impact threshold for a *resource* as a percent increase in the *operating reserve locational marginal price* output from section 9 above the *operating reserve locational marginal price* output from section 13 and is equal to 50%; and
- 4.3.8.53 *ITThresh*2^{ORG} designates the global market power price impact threshold for a *resource* as a \$/MW increase in the *operating reserve locational*

marginal price output from section 9 above the *operating reserve* locational marginal price output from section 13 and is equal to \$25/MW.

4.3.9 Weighting Factors for Zonal Prices

- 4.3.9.1 $WF_{h,m,b}^{VIRT}$ designates the weighting factor for bus $b \in L_m^{VIRT}$ used to calculate the price for *virtual transaction zone* $m \in M$ for hour $h \in \{1, ..., 24\}$;
- 4.3.9.2 $WF_{h,y,b}^{NDL}$ designates the weighting factor for bus $b \in L_y^{NDL}$ used to calculate the price for *non-dispatchable load* zone $y \in Y$ for hour $h \in \{1, ..., 24\}$; and
- 4.3.9.3 The weighting factors in section 4.3.9.1 and section 4.3.9.2 shall be obtained by renormalizing the load distribution factors so that for a given hour the sum of weighting factors for a *non-dispatchable load* zone or for a *virtual transaction zone* is one.

4.4 Other Data Parameters

4.4.1 Non-Dispatchable Demand Forecast

- 4.4.1.1 *AFL*_h designates the average province-wide *non-dispatchable demand* forecast for hour $h \in \{1, ..., 24\}$ calculated by the *security* assessment function; and
- 4.4.1.2 PFL_h designates the peak province-wide non-dispatchable demand forecast for hour $h \in \{1, ..., 24\}$ calculated by the security assessment function.

4.4.2 Variable Generation

4.4.2.1 *AFG*_{h,b} designates the alternative forecast for a *variable generation* resource identified by bus $b \in B^{VG}$ in hour $h \in \{1, ..., 24\}$, which is either the *registered market participant*-submitted forecast or the *IESO*'s centralized forecast.

4.4.3 Internal Transmission Constraints

- 4.4.3.1 *PreConSF*_{h,f,b} designates the pre-contingency sensitivity factor for bus $b \in B \cup D$ indicating the fraction of *energy* injected at bus b which flows on *facility* f during hour h under pre-contingency conditions;
- 4.4.3.2 *VPreConSF*_{h,f,m} designates the pre-contingency sensitivity factor for *virtual transaction zone* $m \in M$ indicating the effect of scheduled *energy* at m to flows on *facility* $f \in F_h$ in hour h under pre-contingency

conditions. It shall be determined as the weighted average of the precontingency sensitivity factors for *non-dispatchable loads*, *dispatchable loads*, *hourly demand response resources*, and *price responsive loads* within the *virtual transaction zone* using the weighting factors $WF_{h,m,b}^{VIRT}$ for *virtual transactions*;

- 4.4.3.3 $AdjNormMaxFlow_{h,f}$ designates the limit corresponding to the maximum flow allowed on *facility f* in hour *h* under pre-contingency conditions;
- 4.4.3.4 $SF_{h,c,f,b}$ designates the post-contingency sensitivity factor for bus $b \in B \cup D$ indicating the fraction of *energy* injected at bus b which flows on *facility* f during hour h under post-contingency conditions for contingency c;
- 4.4.3.5 $VSF_{h,c,f,m}$ designates the post-contingency sensitivity factor for *virtual* transaction zone $m \in M$ indicating the effect of scheduled energy at m to flows on facility $f \in F_{h,c}$ in hour h under post-contingency conditions for contingency c. It shall be determined as the weighted average of the post-contingency sensitivity factors for non-dispatchable loads, dispatchable loads, hourly demand response resources, and price responsive loads within the virtual transaction zone using the weighting factors $WF_{h,m,b}^{VIRT}$ for virtual transactions; and
- 4.4.3.6 $AdjEmMaxFlow_{h,c,f}$ designates the limit corresponding to the maximum flow allowed on *facility f* in hour h under post-contingency conditions for contingency c.

4.4.4 Transmission Losses

- 4.4.4.1 LossAdj_h designates any adjustment needed for hour $h \in \{1, ..., 24\}$ to correct for any discrepancy between Ontario total system losses calculated using a base case power flow from the security assessment function and linearized losses that would be calculated using the marginal loss factors.
- 4.4.4.2 $MglLoss_{h,b}$ designates the marginal loss factor and represent the marginal impact on transmission losses resulting from transmitting *energy* from the *reference bus* to serve an increment of additional load at *resource* bus $b \in B \cup D$ in hour $h \in \{1, ..., 24\}$; and
- 4.4.4.3 $VMglLoss_{h,m}$ designates the marginal loss factor for *virtual transaction* zone $m \in M$ in hour $h \in \{1, ..., 24\}$. It shall be determined as the weighted average of the marginal loss factors for *non-dispatchable loads*, dispatchable loads, hourly demand response resources, and price responsive loads within the virtual transaction zone using the weighting factors $WF_{h,m,b}^{VIRT}$ for virtual transactions.

5 Initialization

5.1 Purpose

5.1.1 The initialization processes set out in this section 5 shall occur prior to the execution of the *day-ahead market calculation engine* described in section 2.1.1 above.

5.2 Reference Bus

- 5.2.1 The *IESO* shall use Richview Transformer Station as the *day-ahead market* calculation engine's default reference bus for the calculation of *locational marginal* prices.
- 5.2.2 If the default *reference bus* is out of service, another in-service bus shall be selected.

5.3 Islanding Conditions

- 5.3.1 In the event of a network split, the *day-ahead market calculation engine* shall:
 - 5.3.1.1 only evaluate *resources* that are within the *main island*;
 - 5.3.1.2 use only forecasts of *demand* forecast areas in the *main island*; and
 - 5.3.1.3 use a bus within the *main island* in place of the *reference bus* if the *reference bus* does not fall within the *main island*.

5.4 Variable Generation Tie-Breaking

5.4.1 For each hour $h \in \{1, ..., 24\}$, each *variable generation resource* bus $b \in B^{VG}$ and each *offer* lamination $k \in K_{h,b}^E$, the *offer* price $PDG_{h,b,k}$ shall be modified to $PDG_{h,b,k} - \left(\frac{TBM_b}{NumVG}\right)\rho$, where ρ is a small nominal value of order 10^{-4} .

5.5 Pseudo-Unit Constraints

5.5.1 Constraints for *pseudo-units* corresponding to minimum and maximum constraints on physical *resources* shall be determined in accordance with section 22.

5.6 Initial Scheduling Assumptions

- 5.6.1 Initial Schedules
 - 5.6.1.1 The following parameters designate the initial *energy* schedules used for hour 0 in the optimization of the next *dispatch day* and shall be based on the hour ending 24 schedules of the most recent execution of the *pre*-

dispatch calculation engine prior to the execution of the day-ahead market calculation engine:

- 5.6.1.1.1 $SDL_{0,b,j}$, which designates the amount of *energy* that a *dispatchable load* is scheduled to consume at bus $b \in B^{DL}$;
- 5.6.1.1.2 *SHDR*_{0,b,j}, which designates the amount of *energy* an *hourly* demand response resource is scheduled to reduce consumption at bus $b \in B^{HDR}$;
- 5.6.1.1.3 $SXL_{0,d,j}$, which designates the amount of *energy* a *boundary entity resource* is scheduled to export at bus $d \in DX$;
- 5.6.1.1.4 $SDG_{0,b,k}$, which designates the amount of *energy* that a *dispatchable generation resource* is scheduled to provide at bus $b \in B^{DG}$:
- 5.6.1.1.5 $SCT_{0,b}$, which designates the schedule of the combustion turbine <u>resource</u> associated with the *pseudo-unit* at bus $b \in B^{PSU}$:
- 5.6.1.1.6 $SST_{0,p}$, which designates the schedule of steam turbine $p \in PST$;
- 5.6.1.1.7 $SIG_{0,d,k}$, which designates the amount of *energy* that a boundary entity resource is scheduled to import from intertie zone bus $d \in DI$;
- 5.6.1.2 The initial schedules for *non-quick start resources* shall be determined to align with the commitment status logic described in section 5.6.2.
- 5.6.2 The following parameters designate the initial commitment status and number of hours in operation used for hour 0 in the optimization of the next *dispatch day*:
 - 5.6.2.1 *ODG*_{0,b}, which designates whether the *dispatchable generation resource* at bus $b \in B^{NQS}$ has been scheduled at or above its *minimum loading point*;
 - 5.6.2.2 *InitOperHrs_b*, which designates the number of consecutive hours at the end of previous day for which the *resource* at bus $b \in B^{NQS}$ was scheduled to operate at or above its *minimum loading point*. For *resources* with $ODG_{0,b} = 0$, $InitOperHrs_b$ shall be set to zero.
- 5.6.3 Initial Net Interchange Schedule
 - 5.6.3.1 The initial net *interchange schedule* value shall be the difference between all imports to Ontario and all exports from Ontario in the last hour of the

previous day. By default, this value will be based on the most recent schedules from the *pre-dispatch calculation engine*.

6 Security Assessment Function

6.1 Interaction between the Security Assessment Function and Optimization Functions

- 6.1.1 The scheduling and pricing algorithms of the *day-ahead market calculation engine* shall perform multiple iterations of the optimization functions and the *security* assessment function to check for violations of monitored thermal limits and operating *security limits* using the schedules produced by the optimization functions.
- 6.1.2 As multiple iterations are performed, the transmission constraints produced by the *security* assessment function shall be used by the optimization functions.
- 6.1.3 All three passes of the *day-ahead market calculation engine* shall use the *security* assessment function.
- 6.1.4 The *security* assessment function shall use the physical *resource* representation of combined cycle *facilitiescombined cycle plants* that are registered as *pseudo-units*.

6.2 Inputs into the Security Assessment Function

- 6.2.1 The *security* assessment function shall use the following inputs:
 - 6.2.1.1 the *IESO* average and peak *demand* forecasts; and
 - 6.2.1.2 applicable *IESO-controlled grid* information pursuant to section 3A.1 of Chapter 7.
- 6.2.2 The *security* assessment function shall also use the following outputs of the optimization functions in Pass 1 and Pass 3:
 - 6.2.2.1 the schedules for *dispatchable loads*, *hourly demand response resources*, and *price responsive loads*;
 - 6.2.2.2 the schedules for *non-dispatchable generation resources* and *dispatchable generation resources*;
 - 6.2.2.3 the schedules for boundary entity resources at each intertie zone; and
 - 6.2.2.4 the net schedules for *virtual transactions* for each *virtual transaction zone*.

- 6.2.3 The *security* assessment function shall also use the following outputs of the optimization functions in Pass 2:
 - 6.2.3.1 the schedules for *dispatchable loads* and *hourly demand response* resources;
 - 6.2.3.2 the schedules for *non-dispatchable generation resources* and *dispatchable generation resources*; and
 - 6.2.3.3 the schedules for *boundary entity resources* at each *intertie zone*.

6.3 Security Assessment Function Processing

- 6.3.1 In Pass 1 and Pass 3 of the *day-ahead market calculation engine*, the *security* assessment function shall determine the average province-wide non-*dispatchable demand* forecast for hour *h*, *AFL_h*, as follows:
 - 6.3.1.1 determine forecast MW quantities for all *load resources* and losses using the *IESO* average *demand* forecasts for *demand* forecast areas, load distribution factors, the total of the *bid* quantities submitted for virtual *hourly demand response resources* and physical *hourly demand response resources*; and
 - 6.3.1.2 determine AFL_h by adding the forecast MW quantities determined for each non-dispatchable load, including forecast MW losses in the demand forecast areas.
- 6.3.2 In Pass 2 of the day-ahead market calculation engine, the security assessment function shall determine the peak province-wide non-dispatchable demand forecast for hour h, PFL_h , as follows:
 - determine forecast MW quantities for all *load resources* and losses using the *IESO* peak *demand* forecasts for *demand* forecast areas, load distribution factors, the total of the *bid* quantities submitted for virtual *hourly demand response resources* and physical *hourly demand response resources*; and
 - determine *PFL_h* by adding the forecast MW quantities determined for each non-dispatchable load, eacheach price responsive load, and each dispatchable load with no bid for energy, including forecast MW losses in the demand forecast areas.
- 6.3.3 In Passes 1 and 3 of the *day-ahead market calculation engine*, the security assessment function shall distribute the net schedules for *virtual transactions* in each *virtual transaction zone* to *non-dispatchable loads*, *dispatchable loads*, *hourly demand response resources*, and *price responsive loads* within the *virtual transaction zone*

using the weighting factors $(WF_{h,m,b}^{VIRT})$ for *virtual transactions*. In the security assessment function, the total MW quantity allocated to:

- 6.3.3.1 a dispatchable load, an hourly demand response resource or a price responsive load shall be equal to the schedule determined by the optimization functions plus the amount allocated in the distribution of the net schedules for virtual transactions; and
- 6.3.3.2 a *non-dispatchable load* shall be equal to its forecast MW quantity plus the amount allocated in the distribution of the net schedules for *virtual transactions*.
- 6.3.4 The *security* assessment function shall perform the following calculations and analyses:
 - 6.3.4.1 A base case solution function shall prepare a power flow solution for each hour. The base case solution function shall select the power system model state applicable to the forecast of conditions for the hour and input schedules.
 - 6.3.4.2 The base case solution function shall use an AC power flow analysis. If the AC power flow analysis fails to converge, the base case solution function shall use a non-linear DC power flow analysis. If the non-linear DC power flow analysis fails to converge, the base case solution function shall use a linear DC power flow analysis.
 - 6.3.4.3 If the AC or non-linear DC power flow analysis converges, continuous thermal limits for all monitored equipment and operating *security limits* shall be monitored to check for pre-contingency limit violations.
 - 6.3.4.4 Violated pre-contingency limits shall be linearized using pre-contingency sensitivity factors and incorporated as constraints for use by the optimization functions.
 - 6.3.4.5 If the linear DC power flow analysis is used, the pre-contingency *security* assessment may develop linear constraints to facilitate the convergence of the AC or non-linear DC power flow analysis in the subsequent iterations.
 - 6.3.4.6 A linear power flow analysis shall be used to simulate contingencies, calculate post-contingency flows and check all monitored equipment for limited-time thermal limit violations.
 - 6.3.4.7 Violated post-contingency limits shall be linearized using post-contingency sensitivity factors and incorporated as constraints for use by the optimization functions.

- 6.3.4.8 The base case solution shall be used to calculate Ontario *transmission* system losses, marginal loss factors and loss adjustment for each hour. The impact of losses on branches between the *resource* bus and the *resource* connection point to the *IESO-controlled grid* and losses on branches outside Ontario shall be excluded when determining marginal loss factors.
- 6.3.4.9 The As-Offered Scheduling, Reference Level Scheduling, Mitigated Scheduling, Reliability Scheduling and DAM Scheduling algorithms described in sections 8, 12, 15, 18 and 20, respectively, shall use the marginal loss factors for each hour calculated by the *security* assessment function.
- 6.3.4.10 The As-Offered Pricing, Reference Level Pricing, Mitigated Pricing, and DAM Pricing algorithms described in sections 9, 13, 16 and 21, respectively, shall use the marginal loss factors used in the last iteration of the optimization function in the corresponding scheduling algorithm.

6.4 Outputs from the Security Assessment Function

- 6.4.1 The outputs of the *security* assessment function used in the optimization functions include the following:
 - 6.4.1.1 a set of linearized constraints for all violated pre-contingency and post-contingency limits for each hour. The sensitivities and limits associated with the constraints shall be those provided by the most recent *security* assessment function iteration;
 - 6.4.1.2 pre-contingency and post-contingency sensitivity factors for each hour;
 - 6.4.1.3 the marginal loss factors as described in sections 6.3.4.8-6.3.4.10; and
 - 6.4.1.4 loss adjustment quantity for each hour.

7 Pass 1: Market Commitment and Market Power Mitigation Pass

- 7.1.1 Pass 1 shall use *market participant* and *IESO* inputs and *resource* and system constraints to determine a set of *resource* schedules and commitments. Pass 1 shall consist of the following algorithms and tests:
 - the As-Offered Scheduling algorithm described in section 8;
 - the As-Offered Pricing algorithm described in section 9;

- the Constrained Area Conditions Test described in section 10;
- the Conduct Test described in section 11;
- the Reference Level Scheduling algorithm described in section 12;
- the Reference Level Pricing algorithm described in section 13;
- the Price Impact Test described in section 14;
- the Mitigated Scheduling algorithm described in section 15; and
- the Mitigated Pricing algorithm described in section 16.

8 As-Offered Scheduling

8.1 Purpose

8.1.1 The As-Offered Scheduling algorithm shall perform a *security*-constrained unit commitment and economic *dispatch* to maximize gains from trade using *dispatch* data submitted by registered market participants to meet the *IESO*'s average province-wide non-dispatchable demand forecast and *IESO*-specified operating reserve requirements for each hour of the next dispatch day.

8.2 Information, Sets, Indices and Parameters

8.2.1 Information, sets, indices and parameters used by the As-Offered Scheduling algorithm are described in sections 3 and 4.

8.3 Variables and Objective Function

- 8.3.1 The As-Offered Scheduling algorithm shall solve for the following variables:
 - 8.3.1.1 *SPRL*_{h,b,j}, which designates the amount of *energy* that a *price responsive* load is scheduled to consume at bus $b \in B^{PRL}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,b}^{E}$;
 - 8.3.1.2 $SDL_{h,b,j}$, which designates the amount of *energy* that a *dispatchable load* is scheduled to consume at bus $b \in B^{DL}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,b}^E$;
 - 8.3.1.3 $S10SDL_{h,b,j}$, which designates the amount of synchronized *ten-minute* operating reserve that a dispatchable load is scheduled to provide at bus $b \in B^{DL}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,b}^{10S}$;

- 8.3.1.4 $S10NDL_{h,b,j}$, which designates the amount of non-synchronized *ten-minute operating reserve* that a *dispatchable load* is scheduled to provide at bus $b \in B^{DL}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,b}^{10N}$;
- 8.3.1.5 $S30RDL_{h,b,j}$, which designates the amount of *thirty-minute operating* reserve that a *dispatchable load* is scheduled to provide at bus $b \in B^{DL}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in \beta_{h,b}^{0R}$;
- 8.3.1.6 SHDR_{h,b,j}, which designates the amount of energy reduction scheduled for an hourly demand response resource at bus $b \in B^{HDR}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,b}^E$;
- 8.3.1.7 *SVB*_{h,v,j}, which designates the amount of *energy* a *virtual zonal* resource $v \in VB$ is scheduled to withdraw eonsume in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,v}^E$;
- 8.3.1.8 $SXL_{h,d,j}$, which designates the amount of *energy* a *boundary entity* resource is scheduled to export at bus $d \in DX$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,d}^E$;
- 8.3.1.9 $S10NXL_{h,d,j}$, which designates the amount of non-synchronized *ten-minute* operating reserve scheduled that a boundary entity resource is scheduled to provide at bus $d \in DX$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,d}^{10N}$;
- 8.3.1.10 $S30RXL_{h,d,j}$, which designates the amount of *thirty-minute operating* reserve scheduled that a *boundary entity resource* is scheduled to provide at bus $d \in DX$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in \mathcal{J}_{h,d}^{30R}$.
- 8.3.1.11 *SNDG*_{h,b,k}, which designates the amount of *energy* that a *non-dispatchable generation resource* is scheduled to provide at bus $b \in B^{NDG}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^E$;
- 8.3.1.12 $SDG_{h,b,k}$, which designates the amount of *energy* that a *dispatchable* generation resource is scheduled to provide above $MinQDG_b$ at bus $b \in B^{DG}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^E$;
- 8.3.1.13 $ODG_{h,b}$, which designates whether the *dispatchable generation resource* at bus $b \in B^{DG}$ has been scheduled at or above its *minimum loading point* in hour $h \in \{1, ..., 24\}$;

- 8.3.1.14 $IDG_{h,b}$, which designates whether the *dispatchable generation resource* at bus $b \in B^{DG}$ has been scheduled to reach its *minimum loading point* in hour $h \in \{1, ..., 24\}$;
- 8.3.1.15 $S10SDG_{h,b,k}$, which designates the amount of synchronized *ten-minute* operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{DG}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10S}$;
- 8.3.1.16 $S10NDG_{h,b,k}$, which designates the amount of non-synchronized tenminute operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{DG}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10N}$;
- 8.3.1.17 $S30RDG_{h,b,k}$, which designates the amount of *thirty-minute operating* reserve that a *dispatchable generation resource* is scheduled to provide at bus $b \in B^{DG}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{30R}$;
- 8.3.1.18 $SCT_{h,b}$, which designates the schedule of the combustion turbine <u>resource</u> associated with the *pseudo-unit* at bus $b \in B^{PSU}$ in hour $h \in \{1, ..., 24\}$;
- 8.3.1.19 $SST_{h,p}$, which designates the schedule of steam turbine <u>resource</u> $p \in PST$ in hour $h \in \{1, ..., 24\}$;
- 8.3.1.20 $O10R_{h,b}$, which designates whether the *pseudo-unit* at bus $b \in B^{NO10DF}$ has been scheduled for *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$;
- 8.3.1.21 *OHO*_{h,b}, which designates whether the *dispatchable* hydroelectric *generation resource* at bus $b \in B^{HE}$ has been scheduled at or above $MinHO_{h,b}$ in hour $h \in \{1, ..., 24\}$;
- 8.3.1.22 $OFR_{h,b,i}$ for $i \in \{1,...,NFor_b\}$, which designates whether the *dispatchable* hydroelectric *generation resource* at bus $b \in B^{HE}$ has been scheduled at or below $ForL_{b,i}$, or, at or above $ForU_{b,i}$ in hour $h \in \{1,...,24\}$;
- 8.3.1.23 *IHE*_{h,b,i}, which designates whether the *dispatchable* hydroelectric *generation resource* at bus $b \in B^{HE}$ registered a start between hours (h 1) and $h \in \{1, ..., 24\}$ as a result of its schedule increasing from below *StartMW*_{b,i} to at or above *StartMW*_{b,i} for $i \in \{1, ..., NStartMW_b\}$;
- 8.3.1.24 $SVO_{h,v,k}$, which designates the amount of *energy* a *virtual zonal resource* $v \in VO$ is scheduled to <u>injectprovide</u> in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,v}^E$;

- 8.3.1.25 $SIG_{h,d,k}$, which designates the amount of *energy* that a *boundary entity* resource is scheduled to import from intertie zone bus $d \in DI$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,d}^E$;
- 8.3.1.26 $S10NIG_{h,d,k}$, which designates the amount of non-synchronized *ten-minute operating reserve* that a *boundary entity resource* is scheduled to provide from *intertie zone* bus $d \in DI$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,d}^{10N}$;
- 8.3.1.27 $S30RIG_{h,d,k}$, which designates the amount of *thirty-minute operating* reserve that a boundary entity resource is scheduled to provide from intertie zone bus $d \in DI$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,d}^{30R}$;
- 8.3.1.28 TB_h , which designates any adjustment to the objective function to facilitate pro-rata tie-breaking in hour $h \in \{1, ..., 24\}$, as described in section 8.3.2.1; and
- 8.3.1.29 $ViolCost_h$, which designates the cost incurred in order to avoid having the schedules violate constraints for hour $h \in \{1, ..., 24\}$, as described in section 8.3.2.3.
- 8.3.2 The objective function for the As-Offered Scheduling algorithm shall maximize gains from trade by maximizing the following expression:

$$\sum_{h = 1 \dots 24} \binom{ObjPRL_h + ObjDL_h - ObjHDR_h + ObjVB_h + ObjXL_h - ObjNDG_h}{-ObjDG_h - ObjVO_h - ObjIG_h - TB_h - ViolCost_h}$$

Where

$$ObjPRL_{h} = \sum_{b \in B^{PRL}} \left(\sum_{j \in J_{h,b}^{E}} SPRL_{h,b,j} \cdot PPRL_{h,b,j} \right)$$

$$ObjDL_{h} = \sum_{b \in B^{DL}} \left(\sum_{j \in J_{h,b}^{E}} SDL_{h,b,j} \cdot PDL_{h,b,j} - \sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} \cdot P10SDL_{h,b,j} - \sum_{j \in J_{h,b}^{20R}} S30RDL_{h,b,j} \cdot P30RDL_{h,b,j} \right)$$

$$ObjHDR_{h} = \sum_{b \in B^{HDR}} \left(\sum_{j \in J_{h,b}^{E}} SHDR_{h,b,j} \cdot PHDR_{h,b,j} \right)$$

$$ObjVB_{h} = \sum_{v \in VB} \left(\sum_{j \in J_{h,v}^{E}} SVB_{h,v,j} \cdot PVB_{h,v,j} \right)$$

$$ObjXL_{h} = \sum_{d \in DX} \left(\sum_{j \in J_{h,d}^{E}} SXL_{h,d,j} \cdot PXL_{h,d,j} - \sum_{j \in J_{h,d}^{10N}} S10NXL_{h,d,j} \cdot P10NXL_{h,d,j} \right)$$

$$- \sum_{j \in J_{h,d}^{30R}} S30RXL_{h,d,j} \cdot P30RXL_{h,d,j}$$

$$ObjNDG_{h} = \sum_{b \in B^{NDG}} \left(\sum_{k \in K_{h,h}^{E}} SNDG_{h,b,k} \cdot PNDG_{h,b,k} \right)$$

$$ObjDG_{h}$$

$$= \sum_{b \in B^{DG}} \left(\sum_{\substack{k \in K_{h,b}^{E} \\ k \in K_{h,b}^{E}}} SDG_{h,b,k} \cdot PDG_{h,b,k} + \sum_{\substack{k \in K_{h,b}^{10S} \\ k \in K_{h,b}^{10N}}} S10SDG_{h,b,k} \cdot P10SDG_{h,b,k} + \sum_{\substack{k \in K_{h,b}^{30R} \\ k \in K_{h,b}^{30R}}} S30RDG_{h,b,k} \cdot P30RDG_{h,b,k} \right)$$

$$+ \sum_{b \in B^{NQS}} \left(ODG_{h,b} \cdot MGODG_{h,b} + IDG_{h,b} \cdot SUDG_{h,b} \right)$$

$$ObjVO_{h} = \sum_{v \in VO} \left(\sum_{\substack{k \in K_{h,v}^{E} \\ k \in K_{h,d}^{2}}} SVO_{h,v,k} \cdot PVO_{h,v,k} \right)$$

$$ObjIG_{h} = \sum_{d \in DI} \left(\sum_{\substack{k \in K_{h,d}^{E} \\ k \in K_{h,d}^{2}}} SIG_{h,d,k} \cdot PIG_{h,d,k} + \sum_{\substack{k \in K_{h,d}^{10N} \\ k \in K_{h,d}^{2OR}}} S10NIG_{h,d,k} \cdot P10NIG_{h,d,k} \right)$$

8.3.2.1 The tie-breaking term (TB_h) shall sum a term for each *bid* or *offer* lamination. For each lamination, this term shall be the product of a small penalty cost and the quantity of the lamination scheduled. The penalty cost shall be calculated by multiplying a base penalty cost of TBPen by the amount of the lamination scheduled and then dividing by the maximum amount thzat could have been scheduled. That is:

$$TB_h = \frac{TBPRL_h + TBDL_h + TBHDR_h + TBVB_h + TBXL_h + TBNDG_h}{+ TBDG_h + TBVO_h + TBIG_h}$$

Where:

$$TBPRL_{h} = \sum_{b \in B^{PRL}} \left(\sum_{j \in J_{h,b}^{E}} \frac{\left(SPRL_{h,b,j}\right)^{2} \cdot TBPen}{QPRL_{h,b,j}} \right);$$

$$TBDL_{h} = \sum_{b \in B^{DL}} \left(\frac{\sum_{j \in J_{h,b}^{E}} \left(\frac{\left(SDL_{h,b,j}\right)^{2} \cdot TBPen}{QDL_{h,b,j}} \right) + \sum_{j \in J_{h,b}^{10S}} \left(\frac{\left(S10SDL_{h,b,j}\right)^{2} \cdot TBPen}{Q10SDL_{h,b,j}} \right) + \sum_{j \in J_{h,b}^{30R}} \left(\frac{\left(S10SDL_{h,b,j}\right)^{2} \cdot TBPen}{Q30RDL_{h,b,j}} \right) + \sum_{j \in J_{h,b}^{30R}} \left(\frac{\left(S30RDL_{h,b,j}\right)^{2} \cdot TBPen}{Q30RDL_{h,b,j}} \right) \right);$$

$$TBHDR_{h} = \sum_{b \in B^{HDR}} \left(\sum_{j \in J_{h,b}^{E}} \frac{\left(SHDR_{h,b,j}\right)^{2} \cdot TBPen}{QHDR_{h,b,j}} \right);$$

$$TBVB_{h} = \sum_{v \in VB} \left(\sum_{j \in J_{h,v}^{E}} \frac{\left(SVB_{h,v,j}\right)^{2} \cdot TBPen}{QVB_{h,v,j}} \right);$$

$$TBXL_{h} = \sum_{d \in DX} \left(\frac{\sum\limits_{j \in J_{h,d}^{E}} \left(\frac{\left(SXL_{h,d,j}\right)^{2} \cdot TBPen}{QXL_{h,d,j}} \right) + \sum\limits_{j \in J_{h,d}^{10N}} \left(\frac{\left(S10NXL_{h,d,j}\right)^{2} \cdot TBPen}{Q10NXL_{h,d,j}} \right) + \sum\limits_{j \in J_{h,d}^{30R}} \left(\frac{\left(S30RXL_{h,d,j}\right)^{2} \cdot TBPen}{Q30RXL_{h,d,j}} \right) \right);$$

$$TBNDG_{h} = \sum_{b \in B^{NDG}} \left(\sum_{k \in K_{h,b}^{E}} \left(\frac{\left(SNDG_{h,b,k}\right)^{2} \cdot TBPen}{QNDG_{h,b,k}} \right) \right);$$

 $TBDG_{h}$

$$=\sum_{b\in B^{DG}}\left(\sum_{k\in K_{h,b}^{E}}^{\sum}\left(\frac{\left(SDG_{h,b,k}\right)^{2}\cdot TBPen}{QDG_{h,b,k}}\right)+\sum_{k\in K_{h,b}^{10S}}\left(\frac{\left(S10SDG_{h,b,k}\right)^{2}\cdot TBPen}{Q10SD_{h,b,k}}\right)+\sum_{k\in K_{h,b}^{20R}}\left(\frac{\left(S10NDG_{h,b,k}\right)^{2}\cdot TBPen}{Q10NDG_{h,b,k}}\right)+\sum_{k\in K_{h,b}^{20R}}\left(\frac{\left(S30RDG_{h,b,k}\right)^{2}\cdot TBPen}{Q30RDG_{h,b,k}}\right)\right);$$

$$TBVO_h = \sum_{v \in VO} \left(\sum_{k \in K_{h,v}^E} \frac{\left(SVO_{h,v,k}\right)^2 \cdot TBPen}{QVO_{h,v,k}} \right);$$

and

$$TBIG_{h} = \sum_{d \in \mathrm{DI}} \left(\frac{\sum\limits_{k \in K_{h,d}^{E}} \left(\frac{\left(SIG_{h,d,k}\right)^{2} \cdot TBPen}{QIG_{h,d,k}} \right) + \sum\limits_{k \in K_{h,d}^{10N}} \left(\frac{\left(S10NIG_{h,d,k}\right)^{2} \cdot TBPen}{Q10NIG_{h,d,k}} \right) + \sum\limits_{k \in K_{h,d}^{30R}} \left(\frac{\left(S30RIG_{h,d,k}\right)^{2} \cdot TBPen}{Q30RIG_{h,d,k}} \right) \right).$$

- 8.3.2.2 *ViolCost_h* shall be calculated for hour $h \in \{1, ..., 24\}$ using the following variables:
 - 8.3.2.2.1 $SLdViol_{h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{LdViol_h}\}$ of the penalty curve for the *energy* balance constraint allowing under-generation;
 - 8.3.2.2.2 *SGenViol*_{h,i}, which designates the violation variable associated with segment $i \in \{1, ..., N_{GenViol_h}\}$ of the penalty curve for the *energy* balance constraint allowing over-generation;
 - 8.3.2.2.3 $S10SViol_{h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{10SViol_h}\}$ of the penalty curve for the synchronized *ten-minute operating reserve* requirement;
 - 8.3.2.2.4 $S10RViol_{h,i}$, which which designates the violation variable associated with segment $i \in \{1, ..., N_{10RViol_h}\}$ of the penalty curve for the total ten-minute operating reserve requirement;
 - 8.3.2.2.5 $S30RViol_{h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{30RViol_h}\}$ of the penalty curve for the *thirty-minute operating reserve* requirement and, when applicable, the flexibility *operating reserve* requirement;
 - 8.3.2.2.6 $SREG10RViol_{r,h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{REG10RViol_h}\}$ of the penalty curve for violating the area total *ten-minute operating reserve* minimum requirement in region $r \in ORREG$;
 - 8.3.2.2.7 $SREG30RViol_{r,h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{REG30RViol_h}\}$ of the penalty curve for violating the area *thirty-minute operating reserve* minimum requirement in region $r \in ORREG$;
 - 8.3.2.2.8 $SXREG10RViol_{r,h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{XREG10RViol_h}\}$ of the penalty curve for violating the area total *ten-minute operating* reserve maximum restriction in region $r \in ORREG$;
 - 8.3.2.2.9 $SXREG30RViol_{r,h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{XREG30RViol_h}\}$ of the penalty curve for violating the area *thirty-minute operating* reserve maximum restriction in region $r \in ORREG$;

- 8.3.2.2.10 $SPreITLViol_{f,h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{PreITLViol_{f,h}}\}$ of the penalty curve for violating the pre-contingency transmission limit for *facility* $f \in F$;
- 8.3.2.2.11 $SITLViol_{c,f,h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{ITLViol_{c,f,h}}\}$ of the penalty curve for violating the post-contingency transmission limit for *facility* $f \in F$ and contingency $c \in C$;
- 8.3.2.2.12 $SPreXTLViol_{z,h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{PreXTLViol_{z,h}}\}$ of the penalty curve for violating the import/export limit associated with *intertie* limit constraint $z \in Z_{Sch}$;
- 8.3.2.2.13 $SNIUViol_{h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{NIUViol_h}\}$ of the penalty curve for exceeding the net interchange increase limit between hours (h-1) and h;
- 8.3.2.2.14 $SNIDViol_{h,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{NIDViol_h}\}$ of the penalty curve for exceeding the net interchange decrease limit between hours (h-1) and h;
- 8.3.2.2.15 $SMaxDelViol_{h,b,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{MaxDelViol_h}\}$ of the penalty curve for exceeding the $maximum\ daily\ energy\ limit\ constraint$ for a resource at bus $b \in B^{ELR}$;
- 8.3.2.2.16 $SMinDelViol_{h,b,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{MinDelViol_h}\}$ of the penalty curve for violating the $minimum\ daily\ energy\ limit\ constraint$ for a resource at bus $b \in B^{HE}$;
- 8.3.2.2.17 $SSMaxDelViol_{h,s,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{SMaxDelViol_h}\}$ of the penalty curve for exceeding the shared $maximum\ daily\ energy\ limit\ constraint\ for\ dispatchable\ hydroelectric\ generation\ resources\ in\ set\ s \in SHE;$
- 8.3.2.2.18 $SSMinDelViol_{h,s,i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{SMinDelViol_h}\}$ of the penalty curve for violating the shared minimum daily energy limit

- constraint for *dispathable* hydroelectric *generation resources* in set $s \in SHE$;
- 8.3.2.2.19 $SOGenLnkViol_{h,(b_1,b_2),i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{OGenLnkViol_h}\}$ of the penalty curve for violating the linked dispatchable hydroelectric generation resources constraint by overgenerating the downstream resource, for $(b_1,b_2) \in LNK$ such that $b_1 \in B_{up}^{HE}$ and $b_2 \in B_{dn}^{HE}$; and
- 8.3.2.2.20 $SUGenLnkViol_{h,(b_1,b_2),i}$, which designates the violation variable associated with segment $i \in \{1, ..., N_{UGenLnkViol_h}\}$ of the penalty curve for violating the linked dispatchable hydroelectric generation resources constraint by undergenerating the downstream resource, for $(b_1,b_2) \in LNK$ such that $b_1 \in B_{up}^{HE}$ and $b_2 \in B_{dp}^{HE}$.
- 8.3.2.3 $ViolCost_h$ shall be calculated as follows:

$$\begin{aligned} \textit{ViolCost}_h &= \sum_{i=1..N_{LdViol_h}} \textit{SLdViol}_{h,i} \cdot \textit{PLdViolSch}_{h,i} \\ &- \sum_{i=1..N_{GenViol_h}} \textit{SGenViol}_{h,i} \cdot \textit{PGenViolSch}_{h,i} \\ &+ \sum_{i=1..N_{10SViol_h}} \textit{S10SViol}_{h,i} \cdot \textit{P10SViolSch}_{h,i} \\ &+ \sum_{i=1..N_{10RViol_h}} \textit{S10RViol}_{h,i} \cdot \textit{P10RViolSch}_{h,i} \\ &+ \sum_{i=1..N_{30RViol_h}} \textit{S30RViol}_{h,i} \cdot \textit{P30RViolSch}_{h,i} \\ &+ \sum_{r \in \textit{ORREG}} \left(\sum_{i=1..N_{REG_{10RViol_h}}} \textit{SREG10RViol}_{r,h,i} \\ &\cdot \textit{PREG10RViolSch}_{h,i} \right) \end{aligned}$$

$$\begin{split} &+ \sum_{r \in ORREG} \left(\sum_{i=1..N_{REG30RViol_h}} SREG30RViol_{r,h,i} \right. \\ &+ PREG30RViolSch_{h,i} \right) \\ &+ \sum_{r \in ORREG} \left(\sum_{i=1..N_{XREG10RViol_h}} SXREG10RViol_{r,h,i} \right. \\ &\cdot PXREG10RViolSch_{h,i} \right) \\ &+ \sum_{r \in ORREG} \left(\sum_{i=1..N_{XREG30RViol_h}} SXREG30RViol_{r,h,i} \right. \\ &\cdot PXREG30RViolSch_{h,i} \right) \\ &+ \sum_{f \in F_h} \left(\sum_{i=1..N_{PreITLViol_{f,h}}} SPreITLViol_{f,h,i} \right. \\ &\cdot PPreITLViolSch_{f,h,i} \right) \\ &+ \sum_{c \in C} \sum_{f \in F_{h,c}} \left(\sum_{i=1..N_{ITLViol_{c,f,h}}} SITLViol_{c,f,h,i} \right. \end{split}$$

$$\begin{split} &\cdot PITLViolSch_{c,f,h,i} \\ &+ \sum_{z \in Z_{Sch}} \left(\sum_{i=1..N_{PreXTLViol_{z,h},i}} SPreXTLViol_{z,h,i} \right. \\ &\cdot PPreXTLViolSch_{z,h,i} \right) \\ &+ \left. \sum_{i=1..N_{NIUViol_{h}}} SNIUViol_{h,i} \cdot PNIUViolSch_{h,i} \right. \\ &+ \left. \sum_{i=1..N_{NIDViol_{h}}} SNIDViol_{h,i} \cdot PNIDViolSch_{h,i} \right. \\ &+ \left. \sum_{i=1..N_{NIDViol_{h}}} SMaxDelViol_{h,i} \cdot PNIDViolSch_{h,i} \right. \\ &\cdot PMaxDelViolSch_{h,i} \right) \\ &+ \sum_{b \in \mathcal{B}^{HE}} \left(\sum_{i=1..N_{MaxDelViol_{h}}} SMinDelViol_{h,b,i} \cdot PMinDelViolSch_{h,i} \right. \\ &+ \sum_{s \in SHE} \left(\sum_{i=1..N_{SMaxDelViol_{h}}} SSMaxDelViol_{h,s,i} \cdot PSMaxDelViolSch_{h,i} \right. \\ &+ \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolSch_{h,i} \right. \\ &+ \sum_{(b_{1}.b_{2}) \in LNK} \left(\sum_{i=1..N_{GenLnkViol_{h}}} SOGenLnkViol_{h,(b_{1}.b_{2}),i} \right. \\ &\cdot POGenLnkViolSch_{h,i} \right) \\ &+ \sum_{(b_{1}.b_{2}) \in LNK} \left(\sum_{i=1..N_{UGenLnkViol_{h}}} SUGenLnkViol_{h,(b_{1}.b_{2}),i} \right. \\ &\cdot PUGenLnkViolSch_{h,i} \right). \end{split}$$

8.4 Constraints

8.4.1 The constraints described in sections 8.5, 8.6 and 8.7 apply to the optimization function in the As-Offered Scheduling algorithm.

8.5 Dispatch Data Constraints Applying to Individual Hours

- 8.5.1 Scheduling Variable Bounds
 - 8.5.1.1 A Boolean variable, $ODG_{h,b}$, shall indicate whether the *resource* at bus $b \in B^{DG}$ is committed in hour $h \in \{1, ..., 24\}$. A value of zero shall indicate that a *resource* is not committed, while a value of one shall indicate that it is committed. Therefore:
 - 8.5.1.1.1 $ODG_{h,b} \in \{0,1\}$ for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$.
 - 8.5.1.2 *Reliability must-run resources* shall be considered committed for all must-run hours.
 - 8.5.1.3 *Resources* providing *regulation* are considered committed for all the hours that they are regulating.
 - 8.5.1.4 Dispatchable generation resources that have minimum loading points, start-up offers, speed no-load offers, minimum generation block run-times and minimum generation block_down times equal to zero shall be considered committed for all hours.
 - 8.5.1.5 If the *dispatchable generation resource* at bus $b \in B^{DG}$ is considered committed according to the requirements in sections 8.5.1.2, 8.5.1.3, and 8.5.1.4 in hour $h \in \{1, ..., 24\}$, then:

$$ODG_{h,h} = 1.$$

8.5.1.6 No schedule shall be negative, nor shall any schedule exceed the quantity *offered* for the respective *energy* and *operating reserve* market. Therefore:

$$\begin{array}{ll} 0 \, \leq \, SPRL_{h,b,j} \, \leq \, \, QPRL_{h,b,j} & \text{for all } b \, \in \, B^{PRL}, j \, \in \, J^E_{h,b}; \\ \\ 0 \, \leq \, SDL_{h,b,j} \, \leq \, QDL_{h,b,j} & \text{for all } b \, \in \, B^{DL}, j \, \in \, J^E_{h,b}; \\ \\ 0 \, \leq \, S10SDL_{h,b,j} \, \leq \, Q10SDL_{h,b,j} & \text{for all } b \, \in \, B^{DL}, j \, \in \, J^{10S}_{h,b}; \\ \\ 0 \, \leq \, S10NDL_{h,b,j} \, \leq \, Q10NDL_{h,b,j} & \text{for all } b \, \in \, B^{DL}, j \, \in \, J^{10N}_{h,b}; \end{array}$$

$$0 \leq S30RDL_{h,b,j} \leq Q30RDL_{h,b,j} \qquad \text{for all } b \in B^{DL}, j \in J_{h,b}^{30R};$$

$$0 \leq SHDR_{h,b,j} \leq QHDR_{h,b,j} \qquad \text{for all } b \in B^{HDR}, j \in J_{h,b}^{E};$$

$$0 \leq SVB_{h,v,j} \leq QVB_{h,v,j} \qquad \text{for all } v \in VB, j \in J_{h,v}^{E};$$

$$0 \leq SXL_{h,d,j} \leq QXL_{h,d,j} \qquad \text{for all } d \in DX, j \in J_{h,d}^{E};$$

$$0 \leq S10NXL_{h,d,j} \leq Q10NXL_{h,d,j} \qquad \text{for all } d \in DX, j \in J_{h,d}^{10N};$$

$$0 \leq S30RXL_{h,d,j} \leq Q30RXL_{h,d,j} \qquad \text{for all } d \in DX, j \in J_{h,d}^{30R};$$

$$0 \leq SNDG_{h,b,k} \leq QNDG_{h,b,k} \qquad \text{for all } b \in B^{NDG}, k \in K_{h,v}^{E};$$

$$0 \leq SVO_{h,v,k} \leq QVO_{h,v,k} \qquad \text{for all } v \in VO, k \in K_{h,v}^{E};$$

$$0 \leq S1G_{h,d,k} \leq Q1G_{h,d,k} \qquad \text{for all } d \in DI, k \in K_{h,d}^{10N};$$

$$0 \leq S30RIG_{h,d,k} \leq Q10NIG_{h,d,k} \qquad \text{for all } d \in DI, k \in K_{h,d}^{10N};$$

$$1 \leq S30RIG_{h,d,k} \leq Q30RIG_{h,d,k} \qquad \text{for all } d \in DI, k \in K_{h,d}^{30R};$$

$$1 \leq S30RIG_{h,d,k} \leq Q30RIG_{h,d,k} \qquad \text{for all } d \in DI, k \in K_{h,d}^{30R};$$

$$1 \leq S30RIG_{h,d,k} \leq Q30RIG_{h,d,k} \qquad \text{for all } d \in DI, k \in K_{h,d}^{30R};$$

$$1 \leq S30RIG_{h,d,k} \leq Q30RIG_{h,d,k} \qquad \text{for all } d \in DI, k \in K_{h,d}^{30R};$$

8.5.1.7 *Generation resources* may be scheduled for *energy* and/or *operating* reserve only if $ODG_{h,b} = 1$. Therefore, for all hours $h \in \{1, ..., 24\}$:

$$\begin{array}{ll} 0 \leq SDG_{h,b,k} \leq ODG_{h,b} \cdot QDG_{h,b,k} & \text{for all } b \in \\ B^{DG}, \ k \in K_{h,b}^{E}; & \\ 0 \leq S10SDG_{h,b,k} \leq ODG_{h,b} \cdot Q10SDG_{h,b,k} & \text{for all } b \in \\ B^{DG}, \ k \in K_{h,b}^{10S}; & \\ 0 \leq S10NDG_{h,b,k} \leq ODG_{h,b} \cdot Q10NDG_{h,b,k} & \text{for all } b \in \\ B^{DG}, \ k \in K_{h,b}^{10N}; & \text{and} & \\ 0 \leq S30RDG_{h,b,k} \leq ODG_{h,b} \cdot Q30RDG_{h,b,k} & \text{for all } b \in \\ B^{DG}, \ k \in K_{h,b}^{30R}. & \end{array}$$

- 8.5.2 Resource Minimums and Maximums for Energy
 - 8.5.2.1 The non-dispatchable portion of price responsive loads shall always be scheduled. For all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{PRL}$:

$$\sum_{j \in J_{h,b}^{E}} SPRL_{h,b,j} \geq QPRLFIRM_{h,b}.$$

8.5.2.2 A constraint shall limit schedules for *dispatchable loads* within their minimum and maximum consumption for an hour. For all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DL}$:

$$MinDL_{h,b} \leq \sum_{j \in J_{h,b}^E} SDL_{h,b,j} \leq MaxDL_{h,b}.$$

8.5.2.3 The non-dispatchable portion of dispatchable loads shall always be scheduled. For all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DL}$:

$$\sum_{j \in J_{h,b}^E} SDL_{h,b,j} \ge QDLFIRM_{h,b}.$$

8.5.2.4 A constraint shall limit schedules for *non-dispatchable generation* resources within their minimum and maximum output for an hour. For all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{NDG}$:

$$MinNDG_{h,b} \le \sum_{k \in K_{h,h}^E} SNDG_{h,b,k} \le MaxNDG_{h,b}.$$

8.5.2.5 A constraint shall limit schedules for *dispatchable generation resources* within their minimum and maximum output for an hour. For a *dispatchable variable generation resource*, the maximum schedule shall be limited by its forecast. That is:

For all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$,

$$\begin{split} AdjMaxDG_{h,b} \\ = \begin{cases} \min(MaxDG_{h,b}, AFG_{h,b}) & if \ b \in B^{VG} \\ MaxDG_{h,b} & otherwise \end{cases} \end{split}$$

and

 $AdjMinDG_{h,b} = min(MinDG_{h,b}, AdjMaxDG_{h,b}).$

For all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$:

$$\begin{split} AdjMinDG_{h,b} &\leq MinQDG_b \cdot ODG_{h,b} + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \\ &\leq AdjMaxDG_{h,b}. \end{split}$$

8.5.2.6 If the commitment status, $ODG_{h,b}$, of a dispatchable generation resource is equal to 1 and if this status is inconsistent with the adjusted minimum

- and maximum constraints, $MinQDG_b > AdjMaxDG_{h,b}$, then $ODG_{h,b}$ shall be changed to a value between 0 and 1.
- 8.5.2.7 If the total *offered* quantity does not exceed the minimum constraint for the *resource*, $MinQDG_b + \sum_{k \in K_{h,b}^E} QDG_{h,b,k} < AdjMinDG_{h,b}$, then the *resource* shall receive a schedule of zero.

8.5.3 Off-Market Transactions

8.5.3.1 For all hours $h \in \{1, ..., 24\}$ and all *intertie zone* buses corresponding to an inadvertent *energy* payback export transaction $d \in DX_h^{INP}$:

$$\sum_{j \in J_{h,d}^E} SXL_{h,d,j} = \sum_{j \in J_{h,d}^E} QXL_{h,d,j}.$$

8.5.3.2 For all hours $h \in \{1, ..., 24\}$ and all *intertie zone* buses corresponding to an inadvertent *energy* payback import transaction $d \in Dl_h^{INP}$:

$$\sum_{k \in K_{h,d}^E} SIG_{h,d,k} = \sum_{k \in K_{h,d}^E} QIG_{h,d,k}.$$

8.5.3.3 For all hours $h \in \{1, ..., 24\}$ and all *intertie zone* buses corresponding to an *emergency energy* export $d \in DX_h^{EM}$:

$$\sum_{j \in J_{h,d}^E} SXL_{h,d,j} = \sum_{j \in J_{h,d}^E} QXL_{h,d,j}.$$

8.5.3.4 For all hours $h \in \{1, ..., 24\}$ and all *intertie zone* buses corresponding to *emergency energy* import $d \in DI_h^{EM}$:

$$\sum_{k \in K_{h,d}^E} SIG_{h,d,k} = \sum_{k \in K_{h,d}^E} QIG_{h,d,k}.$$

- 8.5.4 Operating Reserve Requirements
 - 8.5.4.1 The total synchronized ten-minute operating reserve, non-synchronized ten-minute operating reserve and thirty-minute operating reserve scheduled from a dispatchable load shall not exceed:
 - 8.5.4.1.1 the *dispatchable load's* ramp capability over 30 minutes;
 - 8.5.4.1.2 the total scheduled load less the non-dispatchable portion; and

8.5.4.1.3 the remaining portion of its capacity that is *dispatchable* after considering minimum load consumption constraints.

These restrictions shall be enforced by the following constraints for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DL}$:

$$\begin{split} \sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} + \sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} + \sum_{j \in J_{h,b}^{30R}} S30RDL_{h,b,j} \\ \leq 30 \cdot ORRDL_b; \end{split}$$

$$\begin{split} \sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} + \sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} + \sum_{j \in J_{h,b}^{30R}} S30RDL_{h,b,j} \\ \leq \sum_{j \in J_{h,b}^{E}} SDL_{h,b,j} - QDLFIRM_{h,b}; \end{split}$$

and

$$\begin{split} \sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} + \sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} + \sum_{j \in J_{h,b}^{30R}} S30RDL_{h,b,j} \\ \leq \sum_{j \in J_{h,b}^{E}} SDL_{h,b,j} - MinDL_{h,b} \end{split}$$

8.5.4.2 The amount of both synchronized and non-synchronized *ten-minute* operating reserve that a dispatchable load is scheduled to provide shall not exceed the amount by which the dispatchable load can decrease its load over 10 minutes, as limited by its operating reserve ramp rate. This restriction shall be enforced by the following constraint for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DL}$:

$$\sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} + \sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} \le 10 \cdot ORRDL_b$$

8.5.4.3 The total non-synchronized *ten-minute operating reserve* and *thirty-minute operating reserve* scheduled for an hour shall not exceed total scheduled exports. This restriction shall be enforced by the following constraint for all hours $h \in \{1, ..., 24\}$ and all *intertie zone* export buses $d \in DX$:

$$\sum_{j \in J_{h,d}^{10N}} S10NXL_{h,d,j} + \sum_{j \in J_{h,d}^{30R}} S30RXL_{h,d,j} \le \sum_{j \in J_{h,d}^{E}} SXL_{h,d,j}$$

8.5.4.4 The total *operating reserve* scheduled from a committed *dispatchable generation resource* shall not exceed that *resource*'s: (i) ramp capability over 30 minutes; (ii) remaining capacity; and (iii) unscheduled capacity.

These restrictions shall be enforced by the following constraints for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$:

$$\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} + \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k}$$

$$\leq 30 \cdot ORRDG_{b};$$

$$\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} + \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k}$$

$$\leq \sum_{k \in K_{h,b}^{E}} (QDG_{h,b,k} - SDG_{h,b,k});$$
and
$$\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} + \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k}$$

$$\leq AdjMaxDG_{h,b} - \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} - MinQDG_{b}$$

8.5.4.5 The amount of both synchronized and non-synchronized *ten-minute* operating reserve that a dispatchable generation resource is scheduled to provide shall not exceed the amount by which the resource can increase its output over 10 minutes, as limited by its operating reserve ramp rate. This restriction shall be enforced by the following constraint for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$:

$$\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k}$$

$$\leq 10 \cdot ORRDG_{h}$$

8.5.4.6 The amount of synchronized *ten-minute operating reserve* that a *dispatchable generation resource* may be scheduled to provide shall be limited by its *reserve loading point* for synchronized *ten-minute operating reserve*. This restriction shall be enforced by the following constraint for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$ with $RLP10S_{h,b} > 0$:

$$\begin{split} \sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} \\ & \leq \left(MinQDG_b \cdot ODG_{h,b} + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \right) \\ & \cdot \left(\frac{1}{RLP10S_{h,b}} \right) \\ & \cdot \left(min \left\{ 10 \cdot ORRDG_b, \sum_{k \in K_{h,b}^{10S}} Q10SDG_{h,b,k} \right\} \right) \end{split}$$

8.5.4.7 The amount of *thirty-minute operating reserve* that a *dispatchable generation resource* is scheduled to provide shall be limited by its *reserve loading point* for *thirty-minute operating reserve*. This restriction shall be enforced by the following constraint for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$ with $RLP30R_{h.b} > 0$:

$$\begin{split} \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k} \\ \leq & \left(MinQDG_b \cdot ODG_{h,b} + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \right) \cdot \left(\frac{1}{RLP30R_{h,b}} \right) \\ \cdot & \left(min \left\{ 30 \cdot ORRDG_b, \sum_{k \in K_{h,b}^{30R}} Q30RDG_{h,b,k} \right\} \right) \end{split}$$

8.5.4.8 The total non-synchronized *ten-minute operating reserve* and *thirty-minute operating reserve* scheduled for an hour shall not exceed the remaining maximum import *offers* minus scheduled *energy* imports. This restriction shall be enforced by the following constraint for all hours $h \in \{1, ..., 24\}$ and all *intertie zone* import buses $d \in DI$:

$$\begin{split} \sum_{k \in K_{h,d}^{10N}} S10NIG_{h,d,k} + \sum_{k \in K_{h,d}^{30R}} S30RIG_{h,d,k} \\ \leq \sum_{k \in K_{h,d}^{E}} (QIG_{h,d,k} \, - \, SIG_{h,d,k}) \end{split}$$

- 8.5.5 Pseudo-Units
- 8.5.5.1 A constraint shall be required to calculate physical *generation resource* schedules from *pseudo-unit* schedules using the steam turbine *resource*

shares in the operating regions of the *pseudo-unit* determined in section 22. For all hours $h \in \{1, ..., 24\}$ and *pseudo-unit* buses $b \in B^{PSU}$:

$$\begin{split} \textit{SCT}_{h,b} &= (1 - \textit{STShareMLP}_b) \cdot \textit{MinQDG}_b \cdot \textit{ODG}_{h,b} \\ &+ (1 - \textit{STShareDR}_b) \cdot \left(\sum_{k \in K_{h,b}^{DR}} \textit{SDG}_{h,b,k} \right) \!\!, \end{split}$$

and for all hours $h \in \{1, ..., 24\}$ and steam turbines resources $p \in PST$:

$$SST_{h,p} = \sum_{b \in B_p^{ST}} \left(STShareMLP_b \cdot MinQDG_b \cdot ODG_{h,b} + \sum_{k \in K_{h,b}^{DF}} SDG_{h,b,k} \right) + \sum_{k \in K_{h,b}^{DF}} SDG_{h,b,k} \right)$$

8.5.5.2 Maximum constraints shall be enforced on the operating region to which they apply for both *energy* and *operating reserve* schedules. For all hours $h \in \{1, ..., 24\}$ and *pseudo-unit* buses $b \in B^{PSU}$:

$$\begin{split} & \operatorname{MinQDG}_{b} \cdot \operatorname{ODG}_{h,b} \leq \operatorname{MaxMLP}_{h,b}, \\ & \sum_{k \in K_{h,b}^{DR}} \operatorname{SDG}_{h,b,k} \leq \operatorname{MaxDR}_{h,b}, \\ & \sum_{k \in K_{h,b}^{DF}} \operatorname{SDG}_{h,b,k} \leq \operatorname{MaxDF}_{h,b}, \end{split}$$

and

$$\begin{split} \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \\ + \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k} \leq MaxDR_{h,b} + MaxDF_{h,b} \end{split}$$

8.5.5.3 For a *pseudo-unit* that cannot provide *ten-minute operating reserve* from its duct firing region, constraints shall limit the *pseudo-unit* from being scheduled in its duct firing region whenever the *pseudo-unit* is scheduled for *ten-minute operating reserve*. For all hours $h \in \{1, ..., 24\}$ and *pseudo-unit* buses $b \in B^{NO10DF}$:

$$O\!10R_{h,b} \in \{0,1\}$$

and

$$\begin{split} \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \\ \leq MaxDR_{h,b} + (1 - O10R_{h,b}) \cdot MaxDF_{h,b} \end{split}$$

8.5.5.4 For all hours $h \in \{1, ..., 24\}$, pseudo-unit buses $b \in B^{NO10DF}$, and laminations $k \in K_{h,b}^{10S}$:

$$S10SDG_{h,b,k} \le O10R_{h,b} \cdot Q10SDG_{h,b,k}$$

8.5.5.5 For all hours $h \in \{1, ..., 24\}$, pseudo-unit buses $b \in B^{NO10DF}$, and laminations $k \in K_{h,b}^{10N}$:

$$S10NDG_{h,b,k} \leq O10R_{h,b} \cdot Q10NDG_{h,b,k}$$

- 8.5.5.6 For the purposes of the *energy* balance constraint in section 8.7.1 and the transmission constraints in section 8.7.3, the combustion turbine $\frac{resource \ 's}{h \in \{1, ..., 24\}}$ shall be equal to:
 - 8.5.5.6.1 $SCT_{h,b}$ if the *pseudo-unit* is scheduled at or above *minimum loading point*,
 - 8.5.5.6.2 $RampCT_{b,w}$ if the *pseudo-unit* is scheduled to reach *minimum loading point* in hour (h + w) for $w \in \{1,...,RampHrs_b\}$, or
 - 8.5.5.6.3 0 otherwise.
- 8.5.5.7 For the purposes of the *energy* balance constraint in section 8.7.1 and the transmission constraints in section 8.7.3, the steam turbine <u>resource's</u> schedule for $p \in PST$ shall be equal to $SST_{h,p}$ plus any contribution from $pseudo-unit\ b \in B_p^{ST}$ ramping to *minimum loading point* as given by $RampST_{b,w}$ for a pseudo-unit scheduled to reach *minimum loading point* in hour (h + w) for $w \in \{1, ..., RampHrs_b\}$.
- 8.5.6 Dispatchable Hydroelectric Generation Resources
 - 8.5.6.1 A dispatchable hydroelectric generation resource shall be scheduled to at least its hourly must run quantity. For all hours $h \in \{1, ..., 24\}$ and dispatchable hydroelectric generation resource buses $b \in B^{HE}$:

$$ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \ge MinHMR_{h,b}$$

8.5.6.2 A *dispatchable* hydroelectric *generation resource* shall either be scheduled to 0 or to at least its *minimum hourly output*. For all hours $h \in \{1, ..., 24\}$ and all *dispatchable* hydroelectric *generation resource* buses $b \in B^{HE}$

$$OHO_{h,b} \in \{0,1\};$$

$$ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \ge MinHO_{h,b} \cdot OHO_{h,b};$$
 and for all $k \in K_{h,b}^E$:
$$0 \le SDG_{h,b,k} \le OHO_{h,b} \cdot QDG_{h,b,k}$$

8.5.6.3 A dispatchable hydroelectric generation resource shall not be scheduled within its forbidden regions. For all hours $h \in \{1, ..., 24\}$, all dispatchable hydroelectric generation resource buses $b \in B^{HE}$ and all $i \in \{1, ..., NFor_b\}$:

$$\begin{split} \mathit{OFR}_{h,b,i} &\in \{0,1\};\\ \mathit{ODG}_{h,b} \cdot \mathit{MinQDG}_b \ + \sum_{k \in K_{h,b}^E} \mathit{SDG}_{h,b,k} \\ &\leq \mathit{OFR}_{h,b,i} \cdot \mathit{ForL}_{b,i} + (1 - \mathit{OFR}_{h,b,i}) \\ &\cdot \left(\mathit{MinQDG}_b \ + \sum_{k \in K_{h,b}^E} \mathit{QDG}_{h,b,k} \right);\\ &\text{and} \\ &\mathit{ODG}_{h,b} \cdot \mathit{MinQDG}_b \ + \sum_{k \in K_{h,b}^E} \mathit{SDG}_{h,b,k} \geq (1 - \mathit{OFR}_{h,b,i}) \cdot \mathit{ForU}_{b,i} \end{split}$$

- 8.5.7 <u>Linked</u> Wheeling Through Transactions
 - 8.5.7.1 The amount of scheduled export *energy* must be equal to the amount of scheduled import *energy* for *linked* wheeling through transactions. For all hours $h \in \{1, ..., 24\}$ and all linked boundary entity resource buses $(dx, di) \in L_h$:

$$\sum_{j \in J_{h,dx}^E} SXL_{h,dx,j} = \sum_{k \in K_{h,di}^E} SIG_{h,di,k}$$

8.6 Dispatch Data Inter-Hour/Multi-Hour Constraints

- 8.6.1 Energy Ramping
 - 8.6.1.1 For *disptachable loads*, the constraints in section 8.6.1.5 and section 8.6.2.1 use $URRDL_b$ to represent a ramp up rate selected from $URRDL_{h,b,w}$ and use $DRRDL_b$ to represent a ramp down rate selected from $DRRDL_{h,b,w}$.
 - 8.6.1.2 For disptachable generation resources, the constraints in section 8.6.1.7 and section 8.6.2.2 use $URRDG_b$ to represent a ramp up rate selected from $URRDG_{h,b,w}$ and use $DRRDG_b$ to represent a ramp down rate selected from $DRRDG_{h,b,w}$.
 - 8.6.1.3 The *day-ahead market calculation engine* shall respect the ramping restrictions determined by the up to five *offered* MW quantity, ramp up rate and ramp down rate value sets.
 - 8.6.1.4 In all ramping constraints, the schedules for hour 0 are obtained from the initial scheduling assumptions in section 5.6. For all hours $h \in \{1, ..., 24\}$ the ramping rates in all ramping constraints must be adjusted to allow the applicable *resource* to:
 - 8.6.1.4.1 ramp down from its lower limit in hour (h-1) to its upper limit in hour h; and
 - 8.6.1.4.2 ramp up from its upper limit in hour (h-1) to its lower limit in hour h.
 - 8.6.1.5 Energy schedules for dispatchable loads cannot vary by more than an hour's ramping capability for the applicable resource. This constraint shall be enforced by the following for all hours $h \in \{1, ..., 24\}$ and buses $b \in B^{DL}$:

$$\begin{split} \sum_{j \in J_{h-1,b}^E} SDL_{h-1,b,j} - 60 \cdot DRRDL_b &\leq \sum_{j \in J_{h,b}^E} SDL_{h,b,j} \\ &\leq \sum_{j \in J_{h-1,b}^E} SDL_{h-1,b,j} + 60 \cdot URRDL_b \end{split}$$

8.6.1.6 *Energy* schedules for *hourly demand response resources* cannot vary by more than an hour's ramping capability for the applicable *resource*. This

constraint shall be enforced by the following for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{HDR}$:

$$\begin{split} \sum_{j \in J_{h-1,b}^E} (QHDR_{h-1,b,j} - SHDR_{h-1,b,j}) - 60 \cdot URRHDR_b \\ &\leq \sum_{j \in J_{h,b}^E} (QHDR_{h,b,j} - SHDR_{h,b,j}) \\ &\leq \sum_{j \in J_{h-1,b}^E} (QHDR_{h-1,b,j} - SHDR_{h-1,b,j}) + 60 \cdot DRRHDR_b \end{split}$$

- 8.6.1.7 Energy schedules for a dispatchable generation resource cannot vary by more than an hour's ramping capability for the applicable resource. For all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$:
 - 8.6.1.7.1 For the first hour a *resource* reaches its *minimum loading* point, where $ODG_{h,b} = 1$, $ODG_{h-1,b} = 0$, the following constraint shall be applied:

$$0 \le \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \le 30 \cdot URRDG_b$$

8.6.1.7.2 If the *resource* stays on at or above *minimum loading point* and $ODG_{h,b} = 1$, $ODG_{h-1,b} = 1$, the following constraint shall be applied:

$$\begin{split} \sum_{k \in K_{h-1,b}^E} SDG_{h-1,b,k} - 60 \cdot DRRDG_b &\leq \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \\ &\leq \sum_{k \in K_{h-1,b}^E} SDG_{h-1,b,k} + 60 \cdot URRDG_b \end{split}$$

8.6.1.7.3 For the last hour the *resource* is scheduled at or above *minimum loading point* before being scheduled off, where $ODG_{h,b} = 1$, $ODG_{h+1,b} = 0$, the following constraint shall be applied:

$$0 \le \sum_{k \in K_{b,h}^E} SDG_{h,b,k} \le 30 \cdot DRRDG_b$$

- 8.6.1.8 The constraints in sections 8.6.1.6.1 and 8.6.1.6.3 do not apply to a *quick* start resource.
- 8.6.1.9 For hours where *non-quick start resources* are ramping up to *minimum loading point*, *energy* shall be scheduled using the submitted *ramp up energy to minimum loading point*.

8.6.2 Operating Reserve Ramping

8.6.2.1 The total synchronized *ten-minute operating reserve*, non-synchronized *ten-minute operating reserve* and *thirty-minute operating reserve* from *dispatchable loads* shall not exceed their ramp capability to decrease load consumption and for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DL}$:

$$\begin{split} \sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} + \sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} + \sum_{j \in J_{h,b}^{30R}} S30RDL_{h,b,j} \\ \leq \sum_{j \in J_{h,b}^{E}} SDL_{h,b,j} - \sum_{j \in J_{h-1,b}^{E}} SDL_{h-1,b,j} + 60 \cdot DRRDL_{b} \end{split}$$

8.6.2.2 The total synchronized *ten-minute operating reserve*, non-synchronized *ten-minute operating reserve* and *thirty-minute operating reserve* from a committed *dispatchable generation resource* shall not exceed its ramp capability to increase generation and for all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$:

$$\begin{split} \sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \\ + \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k} & \leq \sum_{k \in K_{h-1,b}^{E}} SDG_{h-1,b,k} \\ - \sum_{k \in K_{h,b}^{S}} SDG_{h,b,k} + 60.URRDG_{b}; \\ \sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} + \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k} \\ + \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} \\ \leq \left[(h-n) \cdot 60 + 30 \right] \cdot URRDG_{b} \cdot ODG_{h,b} \end{split}$$

where n is the hour of the last start before or in hour h; and

$$\begin{split} \sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \\ + \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k} + \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} \\ \leq \left[(m-h) \cdot 60 + 30 \right] \cdot DRRDG_b \cdot ODG_{h,b} \end{split}$$

where m is the hour of the last shutdown in or after hour h.

8.6.3 Non-Quick Start Resources

- 8.6.3.1 Schedules for *non-quick start resources* shall not violate such *resources'* minimum generation block run-times, minimum generation block down_times and maximum number of starts per day.
- 8.6.3.2 A resource's previous day's schedule shall be evaluated to determine any remaining minimum generation block run-time constraints to enforce and determine the commitment status of the resource in hour 0. If $0 < InitOperHrs_b < MGBRTDG_b$, then the resource at bus $b \in B^{NQS}$ has yet to complete its minimum generation block run-time, and:

$$ODG_{1,b}, ODG_{2,b}, ..., ODG_{\min(24,MGBRTDG_b-InitOperHrs_b),b} = 1$$

8.6.3.3 If $ODG_{h-1,b} = 0$, $ODG_{h,b} = 1$, and $MGBRTDG_b > 1$ for hour $h \in \{1, ..., 24\}$, then the *resource* at bus $b \in B^{NQS}$ has been scheduled to start up during hour h and shall be scheduled to remain in operation until it has completed its *minimum generation block run-time* or to the end of the day. Therefore:

$$ODG_{h+1,b}, ODG_{h+2,b}, ..., ODG_{min(24,h+MGBRTDG_{h}-1),b} = 1$$

8.6.3.4 If $ODG_{h-1,b} = 1$, $ODG_{h,b} = 0$, and $MGBDTDG_b > 1$ for hour $h \in \{1, ..., 24\}$, then the *resource* at bus $b \in B^{NQS}$ has been scheduled to shut down during hour h and shall be scheduled to remain off until it has completed its *minimum generation block down_time* or to the end of the day. Therefore:

$$ODG_{h+1,b}, ODG_{h+2,b}, \dots, ODG_{min(24,h+MGBDTDG_b-1),b} = 0$$

- 8.6.3.5 The day-ahead market calculation engine shall not consider start-up offers for non-quick start resources to be scheduled in the first hour of the day if the resource is expected to be scheduled as a result of an operational constraint.
- 8.6.3.6 A Boolean variable, $IDG_{h,b}$ indicates that the *non-quick start resource* at bus $b \in B^{NQS}$ is scheduled to reach its *minimum loading point* in hour $h \in \{1, ..., 24\}$ after being scheduled below its *minimum loading point* in the preceding hour. A value of zero shall indicate that a *resource* is not scheduled to reach its *minimum loading point*, while a value of one indicates that it is scheduled to reach its *minimum loading point*. For all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{NQS}$:

$$IDG_{h,b} = \begin{cases} 1 & if \ ODG_{h-1,b} = 0 \ and \ ODG_{h,b} = 1 \\ 0 & otherwise. \end{cases}$$

8.6.3.7 A non-quick start resource shall not be scheduled more than its maximum number of starts per day. For all buses $b \in B^{NQS}$:

$$\sum_{h=1,24} IDG_{h,b} \leq MaxStartsDG_b$$

8.6.4 Energy Limited Resources

- 8.6.4.1 An *energy limited resource* shall not be scheduled to provide:
 - 8.6.4.1.1 more *energy* than the *maximum daily energy limit* specified for such *resource*; or
 - 8.6.4.1.2 energy in amounts that would preclude such resource from providing operating reserve when activated, for all buses $b \in B^{ELR}$ where an energy limited resource is located and all hours $H \in \{1, ..., 24\}$:

$$\begin{split} \sum_{h=1..H} \left(ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \right) \\ + 100RConv \left(\sum_{k \in K_{H,b}^{10S}} S10SDG_{H,b,k} \right) \\ + \sum_{k \in K_{H,b}^{10N}} S10NDG_{H,b,k} \right) \\ + 300RConv \left(\sum_{k \in K_{H,b}^{30R}} S30RDG_{H,b,k} \right) \\ - \sum_{i=1..N_{MaxDelViol_H}} SMaxDelViol_{H,b,i} \leq MaxDEL_b \end{split}$$

where the factors 100RConv and 300RConv are applied to scheduled ten-minute operating reserve and thirty-minute operating reserve for energy limited resources to convert MW into MWh. Violation variables for over-scheduling a resource's maximum daily energy limit may be used to allow the day-ahead market calculation engine to find a solution.

8.6.5 Dispatchable Hydroelectric Generation Resources

8.6.5.1 *Dispatchable* hydroelectric *generation resources* shall be scheduled for at least their *minimum daily energy limit*. Violation variables for underscheduling a *resource's minimum daily energy limit* may be used to allow

the day-ahead market calculation engine to find a solution. For all dispatchable hydroelectric generation resource buses $b \in B^{HE}$:

$$\begin{split} & \sum_{h=1..24} \left(ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \right. \\ & + \left. \sum_{i=1..N_{MinDelViol_h}} SMinDelViol_{h,b,i} \right) \geq MinDEL_b \end{split}$$

8.6.5.2 A Boolean variable, $IHE_{h,b,i}$ shall indicate that a start for the *dispatchable* hydroelectric *generation resource* at bus $b \in B^{HE}$ was counted in hour $h \in \{1, ..., 24\}$ as a result of the *resource* schedule increasing from below its *i*-th *start indication value* to at or above its *i*-th *start indication value* for $i \in \{1, ..., NStartMW_b\}$. A value of zero shall indicate that a start was not counted, while a value of one indicates that a start was counted.

Therefore, for all hours $h \in \{1, ..., 24\}$, buses $b \in B^{HE}$ and start indication values $i \in \{1, ..., NStartMW_b\}$:

$$IHE_{h,b,i} = \begin{cases} 1 & if \left(ODG_{h-1,b} \cdot MinQDG_b + \sum_{k \in K_{h-1,b}^E} SDG_{h-1,b,k} < StartMW_{b,i} \right) \\ & and \left(ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \ge StartMW_{b,i} \right) \\ 0 & otherwise. \end{cases}$$

8.6.5.3 *Dispatchable* hydroelectric *generation resources* shall not be scheduled to be started more times than permitted by their *maximum number of starts* per day. The following constraint shall apply for all buses $b \in B^{HE}$:

$$\sum_{h=1...24} \left(\sum_{i=1..NStartMW_h} IHE_{h,b,i} \right) \leq MaxStartsHE_b$$

8.6.5.4 The schedules for multiple *dispatchable* hydroelectric *generation* resources with a registered *forebay* shall not exceed shared *maximum* daily energy limits. Violation variables for over-scheduling the *maximam* daily energy limit may be used to allow the day-ahead market calculation engine to find a solution. For all sets $s \in SHE$ and all hours $H \in \{1,...,24\}$:

$$\begin{split} \sum_{h=1..H} \left(\sum_{b \in B_S^{HE}} \left(ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \right) \right) \\ + \sum_{b \in B_S^{HE}} \left(10ORConv \left(\sum_{k \in K_{H,b}^{10S}} S10SDG_{H,b,k} \right) + \sum_{k \in K_{H,b}^{10N}} S10NDG_{H,b,k} \right) \\ + \sum_{k \in K_{H,b}^{10N}} S10NDG_{H,b,k} \right) \\ - \sum_{i=1..N_{SMaxDelViol_H}} SSMaxDelViol_{H,s,i} \\ \leq MaxSDEL_S \end{split}$$

where the factors 100RConv and 300RConv shall be applied to scheduled *ten-minute operating reserve* and *thirty-minute operating reserve* to convert MW into MWh.

8.6.5.5 Schedules for multiple *dispatchable* hydroelectric *generation resources* with a registered *forebay* shall respect shared *minimum daily energy limits*. Violation variables for under-scheduling the *minimum daily energy limit* may be used to allow the *day-ahead market calculation engine* to find a solution. For all sets $s \in SHE$:

$$\begin{split} \sum_{h=1..24} \left(\sum_{b \in B_S^{HE}} \left(ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \right) \\ + \sum_{i=1..N_{SMinDelViol_h}} SSMinDelViol_{h,s,i} \right) \\ \geq MinSDEL_S \end{split}$$

- 8.6.5.6 For linked *dispatchable* hydroelectric *generation resources* with a registered *forebay*, *energy* scheduled at the upstream *resources* in one hour shall result in a proportional amount of *energy* being scheduled at the linked downstream *resources* in the hour determined by the *time lag*.
- 8.6.5.7 For all linked *dispatchable* hydroelectric *generation resources* between upstream *resources* $b_1 \in B_{up}^{HE}$ and downstream *resources* $b_2 \in B_{dn}^{HE}$ for $(b_1,b_2) \in LNK$ and hours $h \in \{1,\ldots,24\}$ such that $h + Lag_{b_1,b_2} \le 24$:

$$\begin{split} \sum_{b_2 \in B_{dn}^{HE}} \left(ODG_{h+Lag_{b_1,b_2},b_2} \cdot MinQDG_{b_2} + \sum_{k \in K_{b_2,h+Lag_{b_1,b_2}}} SDG_{k,h+Lag_{b_1,b_2},b_2} \right) \\ - \sum_{i=1..N_{0GenLnkViol_{h+Lag_{b_1,b_2}}}} SOGenLnkViol_{h+Lag_{b_1,b_2},(b_1,b_2),i} \\ + \sum_{i=1..N_{UGenLnkViol_{h+Lag_{b_1,b_2}}}} SUGenLnkViol_{h+Lag_{b_1,b_2},(b_1,b_2),i} \\ = MWhRatio_{b_1,b_2} \\ \cdot \sum_{b_1 \in B_{up}^{HE}} \left(ODG_{h,b_1} \cdot MinQDG_{b_1} + \sum_{k \in K_{b_1,h}^E} SDG_{k,h,b_1} \right) \end{split}$$

8.7 Constraints for Reliability Requirements

- 8.7.1 Energy Balance
 - 8.7.1.1 The total amount of *energy* withdrawals scheduled at load bus $b \in B$ in hour $h \in \{1, ..., 24\}$, *With*_{h,b} shall be:

$$With_{h,b}$$

$$= \begin{cases} \sum_{j \in J_{h,b}^E} SPRL_{h,b,j} & \text{if } b \in B^{PRL} \\ \sum_{j \in J_{h,b}^E} SDL_{h,b,j} & \text{if } b \in B^{DL} \\ \sum_{j \in J_{h,b}^E} (QHDR_{h,b,j} - SHDR_{h,b,j}) & \text{if } b \in B^{HDR} \end{cases}$$

8.7.1.2 The net *energy* withdrawal for *virtual transaction zone* $m \in M$ in hour $h \in \{1, ..., 24\}$, $VWith_{h,m}$, as all *bids* scheduled from *virtual transactions* for *energy* less all *offers* scheduled from *virtual transaction* for *energy* shall be:

$$VWith_{h,m} = \left(\sum_{v \in VB_m} \sum_{j \in J_{h,v}^E} SVB_{h,v,j}\right) - \left(\sum_{v \in VO_m} \sum_{k \in K_{h,v}^E} SVO_{h,v,k}\right)$$

8.7.1.3 The total amount of export *energy* scheduled at *intertie zone* bus $d \in DX$ in hour $h \in \{1, ..., 24\}$, *With*_{h,d}, as the exports from Ontario to the *intertie zone* bus shall be:

$$With_{h,d} = \sum_{j \in J_{h,d}^E} SXL_{h,d,j}$$

8.7.1.4 The total amount of injections scheduled at internal bus $b \in B$ in hour $h \in \{1, ..., 24\}$, $Inj_{h,b}$, shall be:

$$Inj_{h,b} = OfferInj_{h,b} + RampInj_{h,b}$$

where

$$OfferInj_{h,b} \\ = \begin{cases} \sum_{k \in K_{h,b}^{E}} SNDG_{h,b,k} & if \ b \in B^{NDG} \\ ODG_{h,b} \cdot MinQDG_{b} \ + \ \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} & if \ b \in B^{DG} \end{cases}$$

and

$$\begin{aligned} &RampInj_{h,b} \\ &= \begin{cases} \sum_{w=1..min(RampHrs_b,24-h)} RampE_{b,w} \cdot IDG_{h+w,b} & \text{ if } b \in B^{NQS} \\ & & \text{ otherwise} \end{cases} \end{aligned}$$

8.7.1.5 The total amount of import *energy* scheduled at *intertie zone* bus $d \in DI$ in hour $h \in \{1, ..., 24\}$, $Inj_{h,d}$, as the imports into Ontario from that *intertie zone* bus shall be:

$$Inj_{h,d} = \sum_{k \in K_{h,d}^E} SIG_{h,d,k}$$

8.7.1.6 Injections and withdrawals at each bus shall be multiplied by one plus the marginal loss factor calculated by the *security* assessment function to reflect the losses or reduction in losses that result when injections or withdrawals occur at locations other than the *reference bus*. These loss-adjusted injections and withdrawals must then be equal to each other after taking into account the adjustment for any discrepancy between total and marginal losses. Load or generation reduction associated with the *demand* constraint violation shall be subtracted from the total load or generation for the *day-ahead market calculation engine* to produce a solution. For hour $h \in \{1, ..., 24\}$, the *energy* balance shall be:

$$\begin{aligned} AFL_h + \sum_{b \in B^{PRL} \cup B^{DL} \cup B^{HDR}} (1 + MglLoss_{h,b}) \cdot With_{h,b} \\ + \sum_{m \in M} (1 + VMglLoss_{h,m}) \cdot VWith_{h,m} \\ + \sum_{d \in DX} (1 + MglLoss_{h,d}) \cdot With_{h,d} \\ - \sum_{i=1..N_{LdViol_h}} SLdViol_{h,i} \\ = \sum_{b \in B^{NDG} \cup B^{DG}} (1 + MglLoss_{h,b}) \cdot Inj_{h,b} \\ + \sum_{d \in DI} (1 + MglLoss_{h,d}) \cdot Inj_{h,d} \\ - \sum_{i=1..N_{GenViol_h}} SGenViol_{h,i} + LossAdj_h \end{aligned}$$

8.7.2 Operating Reserve Requirements

- 8.7.2.1 *Operating reserve* shall be scheduled to meet system-wide requirements for synchronized *ten-minute operating reserve*, total *ten-minute operating reserve*, and *thirty-minute operating reserve* while respecting all applicable regional minimum requirements and regional maximum restrictions for *operating reserve*.
- 8.7.2.2 Constraint violation penalty curves shall be used to impose a penalty cost for not meeting the *IESO*'s system-wide *operating reserve* requirements, not meeting a regional minimum requirement, or not adhering to a regional maximum restriction. Full *operating reserve* requirements shall be scheduled unless the cost of doing so would be higher than the applicable penalty cost.

For each hour $h \in \{1, ... 24\}$:

$$\begin{split} \sum_{b \in B^{DL}} \left(\sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} \right) + \sum_{b \in B^{DG}} \left(\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} \right) \\ + \sum_{i=1..N_{10SViol_h}} S10SViol_{h,i} \ \geq \ TOT10S_h; \end{split}$$

$$\sum_{b \in B^{DL}} \left(\sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} \right) + \sum_{b \in B^{DG}} \left(\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} \right)$$

$$+ \sum_{b \in B^{DL}} \left(\sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} \right) + \sum_{d \in DX} \left(\sum_{j \in J_{h,d}^{10N}} S10NXL_{h,d,j} \right)$$

$$+ \sum_{b \in B^{DG}} \left(\sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \right) + \sum_{d \in DI} \left(\sum_{k \in K_{h,d}^{10N}} S10NIG_{h,d,k} \right)$$

$$+ \sum_{i=1..N_{10RViol_h}} S10RViol_{h,i} \ge TOT10R_h;$$
and

$$\begin{split} \sum_{b \in B^{DL}} \left(\sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} \right) + \sum_{b \in B^{DG}} \left(\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} \right) \\ + \sum_{b \in B^{DL}} \left(\sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} \right) + \sum_{d \in DX} \left(\sum_{j \in J_{h,d}^{10N}} S10NXL_{h,d,j} \right) \\ + \sum_{b \in B^{DG}} \left(\sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \right) + \sum_{d \in DI} \left(\sum_{k \in K_{h,d}^{10N}} S10NIG_{h,d,k} \right) \\ + \sum_{b \in B^{DL}} \left(\sum_{j \in J_{h,b}^{30R}} S30RDL_{h,b,j} \right) + \sum_{d \in DX} \left(\sum_{j \in J_{h,d}^{30R}} S30RXL_{h,d,j} \right) \\ + \sum_{b \in B^{DG}} \left(\sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k} \right) + \sum_{d \in DI} \left(\sum_{k \in K_{h,d}^{30R}} S30RIG_{h,d,k} \right) \\ + \sum_{i = 1...N_{30RViol_{h}}} S30RViol_{h,i} \ge TOT30R_{h} \end{split}$$

8.7.2.3 The following constraints shall be applied for each hour $h \in \{1, ... 24\}$ and each region $r \in ORREG$:

$$\begin{split} \sum_{b \in B_r^{REG} \cap B^{DL}} \left(\sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} \right) + \sum_{b \in B_r^{REG} \cap B^{DC}} \left(\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} \right) \\ + \sum_{b \in B_r^{REG} \cap B^{DL}} \left(\sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} \right) \\ + \sum_{d \in D_r^{REG} \cap DL} \left(\sum_{j \in J_{h,b}^{10N}} S10NXL_{h,d,j} \right) \\ + \sum_{d \in D_r^{REG} \cap B^{DC}} \left(\sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \right) \\ + \sum_{d \in D_r^{REG} \cap B^{DC}} \left(\sum_{k \in K_{h,b}^{10N}} S10NIG_{h,d,k} \right) \\ + \sum_{i = 1..N_{REG10RViol_h}} SREG10RViol_{r,h,i} \geq REGMin10R_{h,r}; \\ \sum_{b \in B_r^{REG} \cap B^{DL}} \left(\sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} \right) + \sum_{b \in B_r^{REG} \cap B^{DC}} \left(\sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} \right) \\ + \sum_{d \in D_r^{REG} \cap DL} \left(\sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} \right) \\ + \sum_{d \in D_r^{REG} \cap DL} \left(\sum_{j \in J_{h,b}^{10N}} S10NDL_{h,d,j} \right) \\ + \sum_{d \in D_r^{REG} \cap DL} \left(\sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \right) \\ - \sum_{i = 1..N_{RREG10RViol_h}} \left(\sum_{k \in K_{h,d}^{10N}} S10NIG_{h,d,k} \right) \\ \leq REGMax10R_{h,r}; \end{split}$$

$$\sum_{b \in B_r^{REG} \cap B^{DL}} \left(\sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} \right) + \sum_{b \in B_r^{REG} \cap B^{DG}} \left(\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} \right)$$

$$+ \sum_{b \in B_r^{REG} \cap B^{DL}} \left(\sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{DG}} \left(\sum_{j \in J_{h,d}^{10N}} S10NDG_{h,b,k} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{D}} \left(\sum_{k \in K_{h,d}^{10N}} S10NIG_{h,d,k} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{DL}} \left(\sum_{j \in J_{h,b}^{20R}} S30RDL_{h,b,j} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{D}} \left(\sum_{j \in J_{h,d}^{20R}} S30RXL_{h,d,j} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{D}} \left(\sum_{k \in K_{h,d}^{20R}} S30RDG_{h,b,k} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{D}} \left(\sum_{k \in K_{h,d}^{20R}} S30RIG_{h,d,k} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{D}} \left(\sum_{k \in K_{h,d}^{20R}} S30RIG_{h,d,k} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{D}} \left(\sum_{k \in K_{h,d}^{20R}} S30RIG_{h,d,k} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{D}} \left(\sum_{k \in K_{h,d}^{20R}} S30RIG_{h,d,k} \right)$$

$$+ \sum_{d \in D_r^{REG} \cap D^{D}} \left(\sum_{k \in K_{h,d}^{20R}} S30RViol_{r,h,i} \ge REGMin30R_{h,r};$$

and

$$\begin{split} \sum_{b \in B_r^{REG} \cap B^{DL}} \left(\sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} \right) + \sum_{b \in B_r^{REG} \cap B^{DG}} \left(\sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} \right) \\ + \sum_{b \in B_r^{REG} \cap B^{DL}} \left(\sum_{j \in J_{h,b}^{10N}} S10NDL_{h,b,j} \right) \\ + \sum_{d \in D_r^{REG} \cap DX} \left(\sum_{j \in J_{h,d}^{10N}} S10NXL_{h,d,j} \right) \\ + \sum_{b \in B_r^{REG} \cap B^{DG}} \left(\sum_{k \in K_{h,d}^{10N}} S10NDG_{h,b,k} \right) \\ + \sum_{d \in D_r^{REG} \cap DD} \left(\sum_{k \in K_{h,d}^{10N}} S10NIG_{h,d,k} \right) \\ + \sum_{d \in D_r^{REG} \cap DDL} \left(\sum_{j \in J_{h,d}^{20N}} S30RDL_{h,b,k} \right) \\ + \sum_{d \in D_r^{REG} \cap DDG} \left(\sum_{k \in K_{h,d}^{20R}} S30RXL_{h,d,j} \right) \\ + \sum_{d \in D_r^{REG} \cap DDG} \left(\sum_{k \in K_{h,d}^{20R}} S30RDG_{h,b,k} \right) \\ - \sum_{i = 1..N_{XREG30RViol_h}} SXREG30RViol_{r,h,i} \\ \leq REGMax30R_{h,r}. \end{split}$$

8.7.3 IESO Internal Transmission Limits

8.7.3.1 A set of *energy* schedules shall be produced that do not violate any *security limits* in the pre-contingency state and the post-contingency state subject to the remainder of this section 8.7.3. The total amount of *energy* scheduled to be injected and withdrawn at each bus used by the *energy*

balance constraint in section 8.7.1.6, shall be used to produce these schedules.

- 8.7.3.2 Pre-contigency, $SPreITLViol_{f,h,i}$, and post-contingency, $SITLViol_{c,f,h,i}$, transmission limit violation variables shall allow the *day-ahead market calculation engine* to find a solution.
- 8.7.3.3 For all hours $h \in \{1, ..., 24\}$ and *facilities* $f \in F_h$, the linearized constraints for violated pre-contingency limits obtained from the *security* assessment function shall take the form:

$$\begin{split} \sum_{b \in B^{NDG} \cup B^{DG}} & PreConSF_{h,f,b} \cdot Inj_{h,b} \\ & - \sum_{b \in B^{PRL} \cup B^{DL} \cup B^{HDR}} PreConSF_{h,f,b} \cdot With_{h,b} \\ & - \sum_{m \in M} VPreConSF_{h,f,m} \cdot VWith_{h,m} \\ & + \sum_{d \in DI} PreConSF_{h,f,d} \cdot Inj_{h,d} \\ & - \sum_{d \in DX} PreConSF_{h,f,d} \cdot With_{h,d} \\ & - \sum_{i = 1..N_{PreITLViol_{f,h}}} SPreITLViol_{f,h,i} \\ & \leq AdjNormMaxFlow_{h,f} \end{split}$$

8.7.3.4 For all hours $h \in \{1, ..., 24\}$, contingencies $c \in C$, and *facilities* $f \in F_{h,c}$, the linearized constraints for violated post-contingency limits obtained from the *security* assessment function shall take the form:

$$\begin{split} \sum_{b \in B^{NDG} \cup B^{DG}} SF_{h,c,f,b} \cdot Inj_{h,b} - \sum_{b \in B^{PRL} \cup B^{DL} \cup B^{HDR}} SF_{h,c,f,b} \cdot With_{h,b} \\ - \sum_{m \in M} VSF_{h,c,f,m} \cdot VWith_{h,m} + \sum_{d \in DI} SF_{h,c,f,d} \\ \cdot Inj_{h,d} - \sum_{d \in DX} SF_{h,c,f,d} \cdot With_{h,d} \\ - \sum_{i=1..N_{ITLViol_{c,f,h}}} SITLViol_{c,f,h,i} \\ \leq AdjEmMaxFlow_{h,c,f} \end{split}$$

8.7.4.1 A set of *energy* and *operating reserve* schedules shall be produced that respect any *security limits* associated with *interties* between Ontario and *intertie zones*. For all hours $h \in \{1, ..., 24\}$ and all constraints $z \in Z_{Sch}$:

$$\sum_{a \in A: \; EnCoeff_{a,z} \neq 0} \left[\sum_{d \in DI_a} \sum_{k \in K_{h,d}^E} SIG_{h,d,k} - \sum_{d \in DX_a} \sum_{j \in J_{h,d}^E} SXL_{h,d,j} \right) \\ + 0.5 \cdot \left(EnCoeff_{a,z} + 1 \right) \left(\sum_{d \in DI_a} \left(\sum_{k \in K_{h,d}^{10N}} S10NIG_{h,d,k} + \sum_{k \in K_{h,d}^{30R}} S30RIG_{h,d,k} \right) + \sum_{j \in J_{h,d}^{30R}} S30RXL_{h,d,j} \right) \\ - \sum_{i=1..N_{PreXTLViol_{z,h}}} SPreXTLViol_{z,h,i} \leq MaxExtSch_{h,z}$$

where for out-of-service *intertie zones*, the *intertie* limits shall be set to zero and all *boundary entity resources* shall receive a zero schedule for *energy* and *operating reserve*.

- 8.7.4.2 Changes in the hour-to-hour net *energy* schedule over all *intertie zones* shall not exceed the net interchange scheduling limit. The net import schedule shall be summed over all *intertie zones* for a given hour to obtain the net *interchange schedule* for the hour as follows:
 - 8.7.4.2.1 It shall not exceed the net *interchange schedule* for the previous hour plus the net interchange scheduling limit;
 - 8.7.4.2.2 It shall not be less than the net *interchange schedule* for the previous hour minus the net interchange scheduling limit; and
- 8.7.4.3 Violation variables may be used for both the up and down ramp limits to allow the *day-ahead market calculation engine* to find a solution and for all hours $h \in \{1, ..., 24\}$:

$$\begin{split} \sum_{d \in DI} \sum_{k \in K_{h-1,d}^E} SIG_{h-1,d,k} - \sum_{d \in DX} \sum_{j \in J_{h-1,d}^E} SXL_{h-1,d,j} - ExtDSC_h \\ - \sum_{i=1..N_{NIDViol_h}} SNIDViol_{h,i} \\ \leq \sum_{d \in DI} \sum_{k \in K_{h,d}^E} SIG_{h,d,k} - \sum_{d \in DX} \sum_{j \in J_{h,d}^E} SXL_{h,d,j} \\ \leq \sum_{d \in DI} \sum_{k \in K_{h-1,d}^E} SIG_{h-1,d,k} - \sum_{d \in DX} \sum_{j \in J_{h-1,d}^E} SXL_{h-1,d,j} \\ + ExtUSC_h + \sum_{i=1..N_{NIUViol_h}} SNIUViol_{h,i} \end{split}$$

8.7.5 Penalty Price Variable Bounds

8.7.5.1 Penalty price variables shall be restricted to the ranges determined by the constraint violation penalty curves for the As-Offered Scheduling algorithm and for all hours $h \in \{1, ..., 24\}$:

$$0 \leq SLdViol_{h,i} \leq QLdViolSch_{h,i} \qquad \text{for all } i \in \{1, \dots, N_{LdViol_h}\};$$

$$0 \leq SGenViol_{h,i} \leq QGenViolSch_{h,i} \qquad \text{for all } i \in \{1, \dots, N_{GenViol_h}\};$$

$$0 \leq S10SViol_{h,i} \leq Q10SViolSch_{h,i} \qquad \text{for all } i \in \{1, \dots, N_{10SViol_h}\};$$

$$0 \leq S10RViol_{h,i} \leq Q10RViolSch_{h,i} \qquad \text{for all } i \in \{1, \dots, N_{10RViol_h}\};$$

$$0 \leq S30RViol_{h,i} \leq Q30RViolSch_{h,i} \qquad \text{for all } i \in \{1, \dots, N_{30RViol_h}\};$$

$$0 \leq SREG10RViol_{r,h,i} \leq QREG10RViolSch_{h,i} \qquad \text{for all } r \in ORREG,$$

$$i \in \{1, \dots, N_{REG10RViol_h}\};$$

$$0 \leq SREG30RViol_{r,h,i} \leq QREG30RViolSch_{h,i} \qquad \text{for all } r \in ORREG,$$

$$i \in \{1, \dots, N_{REG30RViol_h}\};$$

$$0 \leq SXREG10RViol_{r,h,i} \leq QXREG10RViolSch_{h,i} \qquad \text{for all } r \in ORREG,$$

$$i \in \{1, \dots, N_{XREG30RViol_h}\};$$

$$0 \leq SXREG30RViol_{r,h,i} \leq QXREG30RViolSch_{h,i} \qquad \text{for all } r \in ORREG,$$

$$i \in \{1, \dots, N_{XREG30RViol_h}\};$$

$$0 \leq SPreITLViol_{f,h,i} \leq QPreITLViolSch_{f,h,i} \qquad \text{for all } f \in F_h,$$

$$i \in \{1, \dots, N_{PreITLViol_{f,h,i}}\};$$

```
0 \leq SITLViol_{c,f,h,i} \leq QITLViolSch_{c,f,h,i}
                                                                      for all c \in C, f \in F_{h,c},
i \in \{1, \dots, N_{ITLViol_{c,f,h}}\};
0 \leq SPreXTLViol_{z,h,i} \leq QPreXTLViolSch_{z,h,i}
                                                                      for all z \in Z_{Sch},
i \in \{1, \dots, N_{PreXTLViol_{z,h}}\};
0 \leq SNIUViol_{h,i} \leq QNIUViolSch_{h,i}
                                                                      for all i \in \{1, ..., N_{NIUViol_h}\};
0 \leq SNIDViol_{h,i} \leq QNIDViolSch_{h,i}
                                                                      for all i \in \{1, ..., N_{NIDViol_h}\};
0 \leq SMaxDelViol_{h,b,i} \leq QMaxDelViolSch_{h,i}
                                                                      for all b \in B^{ELR},
i \in \{1, \ldots, N_{MaxDelViol_h}\};
0 \leq SMinDelViol_{h.b.i} \leq QMinDelViolSch_{h,i}
                                                                      for all b \in B^{HE},
i \in \{1, \ldots, N_{MinDelViol_h}\};
0 \leq \textit{SSMaxDelViol}_{\textit{h,s,i}} \leq \textit{QSMaxDelViolSch}_{\textit{h,i}}
                                                                       for all s \in SHE,
i \in \{1, \ldots, N_{SMaxDelViol_h}\};
0 \leq SSMinDelViol_{h,s,i} \leq QSMinDelViolSch_{h,i}
                                                                       for all s \in SHE,
i \in \{1, ..., N_{SMinDelViol_h}\};
0 \leq SOGenLnkViol_{h,(b_1,b_2),i} \leq QOGenLnkViol_{h,i}
                                                                      for all (b_1, b_2) \in LNK,
i \in \{1, ..., N_{OGenLnkViol_h}\}; and
0 \leq SUGenLnkViol_{h,(b_1,b_2),i} \leq QUGenLnkViol_{h,i}
                                                                  for all (b_1, b_2) \in LNK,
i \in \{1, \dots, N_{UGenLnkViol_h}\}
```

8.8 Outputs

8.8.1 Outputs for the As-Offered Scheduling algorithm include *resource* schedules and commitments.

9 As-Offered Pricing

9.1 Purpose

9.1.1 The As-Offered Pricing algorithm shall perform a *security*-constrained economic *dispatch* to maximize gains from trade using *dispatch data* submitted by *registered market participants*, including *resource* schedules and commitments produced by the As-Offered Scheduling algorithm, to meet the *IESO*'s average province-wide non-

dispatchable demand forecast and IESO-specified operating reserve requirements for each hour of the next dispatch day.

9.2 Information, Sets, Indices and Parameters

- 9.2.1 Information sets, indices and parameters used by the As-Offered Pricing algorithm are described in sections 3 and 4. In addition, the following *resource* schedules and commitments from the As-Offered Scheduling algorithm in section 8 shall be used by the As-Offered Pricing algorithm:
 - 9.2.1.1 $SDG_{h,b,k}^{AOS}$, which designates the amount of *energy* that a *dispatchable* generation resource is scheduled to provide above $MinQDG_b$ at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{E}$;
 - 9.2.1.2 $ODG_{h,b}^{AOS}$, which designates whether the *dispatchable generation resource* at bus $b \in B^{DG}$ was scheduled at or above its *minimum loading point* in hour $h \in \{1, ..., 24\}$;
 - 9.2.1.3 $S10SDG_{h,b,k}^{AOS}$, which designates the amount of synchronized *ten-minute* operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10S}$;
 - 9.2.1.4 $S10NDG_{h,b,k}^{AOS}$, which designates the amount of non-synchronized *ten-minute operating reserve* that a *dispatchable generation resource* is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10N}$;
 - 9.2.1.5 $S30RDG_{h,b,k}^{AOS}$, which designates the amount of *thirty-minute operating* reserve that a *dispatchable generation resource* is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{30R}$; and
 - 9.2.1.6 $OHO_{h,b}^{AOS}$, which designates whether the *dispatchable* hydroelectric generation resource at bus $b \in B^{HE}$ has been scheduled at or above $MinHO_{h,b}$ in hour $h \in \{1, ..., 24\}$.

9.3 Variables and Objective Function

9.3.1 The *day-ahead market calculation engine* shall solve for the same variables as in the As-Offered Scheduling algorithm, section 8.3.1, with the following exceptions:

- 9.3.1.1 $IDG_{h,b}$ for bus $b \in B^{DG}$ and hour $h \in \{1, ..., 24\}$ shall not appear in the formulation;
- 9.3.1.2 $ODG_{h,b}$ for bus $b \in B^{DG}$ and hour $h \in \{1, ..., 24\}$ shall be fixed to a constant value;
- 9.3.1.3 *OHO*_{h,b} for bus $b \in B^{HE}$ and hour $h \in \{1, ..., 24\}$ shall be fixed to a constant value;
- 9.3.1.4 $IHE_{h,b,i}$ for bus $b \in B^{HE}$, hour $h \in \{1, ..., 24\}$ and start indication value $i \in \{1, ..., NStartMW_b\}$ shall not appear in the formulation;
- 9.3.1.5 $SOGenLnkViol_{h,(b_1,b_2),i}$ for $(b_1,b_2) \in LNK$ such that $b_1 \in B_{up}^{HE}$ and $b_2 \in B_{dn}^{HE}$, hour $h \in \{1, ..., 24\}$ and $i \in \{1, ..., N_{OGenLnkViol_h}\}$ shall not appear in the formulation; and
- 9.3.1.6 $SUGenLnkViol_{h,(b_1,b_2),i}$ for $(b_1,b_2) \in LNK$ such that $b_1 \in B_{up}^{HE}$ and $b_2 \in B_{dn}^{HE}$, hour $h \in \{1, ..., 24\}$ and $i \in \{1, ..., N_{UGenLnkViol_h}\}$ shall not appear in the formulation.
- 9.3.2 The objective function for the As-Offered Pricing algorithm shall maximize gains from trade by maximizing the following expression:

$$\sum_{h = 1,\dots,24} \binom{ObjPRL_h + ObjDL_h - ObjHDR_h + ObjVB_h + ObjXL_h - ObjNDG_h}{-ObjDG_h - ObjVO_h - ObjIG_h - TB_h - ViolCost_h}$$

where:

$$ObjPRL_{h} = \sum_{b \in B^{PRL}} \left(\sum_{j \in J_{h,b}^{E}} SPRL_{h,b,j} \cdot PPRL_{h,b,j} \right)$$

$$ObjDL_{h} = \sum_{b \in \mathcal{B}} \int_{bL} \left(\sum_{j \in J_{h,b}^{L}} SDL_{h,b,j} \cdot PDL_{h,b,j} - \sum_{j \in J_{h,b}^{L} S} S10SDL_{h,b,j} \cdot P10SDL_{h,b,j} - \sum_{j \in J_{h,b}^{L} S} S10NDL_{h,b,j} \cdot P10NDL_{h,b,j} - \sum_{j \in J_{h,b}^{L} S} S30RDL_{h,b,j} \cdot P30RDL_{h,b,j} \right)$$

$$ObjHDR_{h} = \sum_{b \in \mathcal{B}} \left(\sum_{j \in J_{h,b}^{L} S} SHDR_{h,b,j} \cdot PHDR_{h,b,j} \right)$$

$$ObjVB_{h} = \sum_{v \in VB} \left(\sum_{j \in J_{h,d}^{L} SVB_{h,v,j}} SVB_{h,v,j} \cdot PVB_{h,v,j} \right)$$

$$ObjXL_{h} = \sum_{d \in DX} \left(\sum_{j \in J_{h,d}^{L} SXL_{h,d,j}} SXL_{h,d,j} \cdot PXL_{h,d,j} - \sum_{j \in J_{h,d}^{L} S} S10NXL_{h,d,j} \cdot P10NXL_{h,d,j} \right)$$

$$ObjNDG_{h} = \sum_{b \in \mathcal{B}} \sum_{h \in K_{h,b}^{L} S} SDG_{h,b,k} \cdot PDG_{h,b,k} + \sum_{k \in K_{h,b}^{L} S} S10SDG_{h,b,k} \cdot P10SDG_{h,b,k} + ObjDG_{h,b,k} \cdot P10SDG_{h,b,k} \cdot P10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{L} S} S10NDG_{h,b,k} \cdot P30RDG_{h,b,k} + \sum_{k \in K_{h,b}^{L} S} S30RDG_{h,b,k} \cdot P30RDG_{h,b,k} \cdot P30RDG_{h,b,k} + \sum_{k \in K_{h,b}^{L} S} S30RDG_{h,b,k} \cdot P30RDG_{h,b,k} + \sum_{k \in K_{h,b}^{L} S} S30RDG_{h,d,k} \cdot P30RDG_{h,b,k} + \sum_{k \in K_{h,b}^{L} S} S30RDG_{h,d,k} \cdot P30RIG_{h,d,k} + \sum_{k \in K_{h,d}^{L} S} S30RDG_{h,d,k} \cdot P30RIG_{h,d,k} \cdot P30RIG_{h,d,k} + \sum_{k \in K_{h,d}^{L} S} S30RDG_{h,d,k} \cdot P30RIG_{h,d,k} + \sum_{k \in K_{h,d}^{L} S} S30RDG_{h,d,k} \cdot P30RIG_{h,d,k} \cdot P30RIG_{h,d,k} \cdot P30RIG_{h,d,k} \cdot P30RIG_{h,d,k} \cdot P30RIG_{h,d,k} \cdot P30RIG_{h,d,k} + \sum_{k \in K_{h,d}^{L} S} S30RDG_{h,d,k} \cdot P30RIG_{h,d,k} \cdot P30R$$

- 9.3.2.1 The tie-breaking term (TB_h) shall be the same term described in section 8.3.2.1.
- 9.3.2.2 $ViolCost_h$ shall be calculated as follows:

$$\begin{aligned} ViolCost_{h} &= \sum_{i=1..N_{LdViol_{h}}} SLdViol_{h,i} \cdot PLdViolPrc_{h,i} \\ &- \sum_{i=1..N_{GenViol_{h}}} SGenViol_{h,i} \cdot PGenViolPrc_{h,i} \\ &+ \sum_{i=1..N_{10SViol_{h}}} S10SViol_{h,i} \cdot P10SViolPrc_{h,i} \\ &+ \sum_{i=1..N_{10SViol_{h}}} S10RViol_{h,i} \cdot P10RViolPrc_{h,i} \\ &+ \sum_{i=1..N_{30RViol_{h}}} S30RViol_{h,i} \cdot P30RViolPrc_{h,i} \\ &+ \sum_{r \in ORREG} \left(\sum_{i=1..N_{REG10RViol_{h}}} SREG10RViol_{r,h,i} \\ &\cdot PREG10RViolPrc_{h,i} \right) \\ &+ \sum_{r \in ORREG} \left(\sum_{i=1..N_{REG30RViol_{h}}} SREG30RViol_{r,h,i} \\ &\cdot PXREG10RViolPrc_{h,i} \right) \\ &+ \sum_{r \in ORREG} \left(\sum_{i=1..N_{XREG10RViol_{h}}} SXREG10RViol_{r,h,i} \\ &\cdot PXREG30RViolPrc_{h,i} \right) \\ &+ \sum_{r \in ORREG} \left(\sum_{i=1..N_{XREG30RViol_{h}}} SXREG30RViol_{r,h,i} \\ &\cdot PXREG30RViolPrc_{h,i} \right) \\ &+ \sum_{f \in F_{h}} \left(\sum_{i=1..N_{PRITIViol_{f,h}}} SPreITLViol_{f,h,i} \right) \end{aligned}$$

$$\begin{split} \cdot PPreITLViolPrc_{f,h,i}) \\ + \sum_{c \in C} \sum_{f \in F_{h,c}} \left(\sum_{i=1..N_{ITLViol_{c,f,h}}} SITLViol_{c,f,h,i} \right) \\ + \sum_{c \in Z_{Sch}} \left(\sum_{i=1..N_{PreXTLViol_{Z,h}}} SPreXTLViol_{z,h,i} \right) \\ + \sum_{c \in Z_{Sch}} \left(\sum_{i=1..N_{PreXTLViol_{Z,h}}} SPreXTLViol_{z,h,i} \right) \\ + \sum_{i=1..N_{NIUViol_{h}}} SNIUViol_{h,i} \cdot PNIUViolPrc_{h,i} \\ + \sum_{i=1..N_{NIDViol_{h}}} SNIDViol_{h,i} \cdot PNIDViolPrc_{h,i} \\ + \sum_{b \in B^{ELR}} \left(\sum_{i=1..N_{MaxDelViol_{h}}} SMaxDelViol_{h,b,i} \cdot PMaxDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMaxDelViol_{h}}} SSMaxDelViol_{h,b,i} \cdot PSMaxDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMaxDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{s \in SHE} \left(\sum_{i=1..N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{i=1...N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{i=1...N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{i=1...N_{SMinDelViol_{h}}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right) \\ + \sum_{i=1...N_{SMinDelViol_{h}} SSMinDelViol_{h,s,i} \cdot PSMinDelViolPrc_{h,i} \right)$$

9.4 Constraints

9.4.1 The constraints described in sections 9.5, 9.6, 9.7 and 9.8 apply to the optimization function in the As-Offered Pricing algorithm.

9.5 Dispatch Data Constraints Applying to Individual Hours

- 9.5.1 Scheduling Variable Bounds
 - 9.5.1.1 No schedule shall be negative, nor shall any schedule exceed the quantity respectively *offered* for *energy* and *operating reserve*. For all hours $h \in \{1, ..., 24\}$:

$0 \le SPRL_{h,b,j} \le QPRL_{h,b,j}$	for all $b \in B^{PRL}$, $j \in J_{h,b}^E$;
$0 \leq SDL_{h,b,j} \leq QDL_{h,b,j}$	for all $b \in B^{DL}, j \in J_{h,b}^E$;
$0 \leq S10SDL_{h,b,j} \leq Q10SDL_{h,b,j}$	for all $b \in B^{DL}, j \in J_{h,b}^{10S}$;
$0 \leq S10NDL_{h,b,j} \leq Q10NDL_{h,b,j}$	for all $b \in B^{DL}, j \in J_{h,b}^{10N}$;
$0 \leq S30RDL_{h,b,j} \leq Q30RDL_{h,b,j}$	for all $b \in B^{DL}, j \in J_{h,b}^{30R}$;
$0 \le SHDR_{h,b,j} \le QHDR_{h,b,j}$	for all $b \in B^{HDR}, j \in J_{h,b}^E$;
$0 \le SVB_{h,v,j} \le QVB_{h,v,j}$	for all $v \in VB, j \in J_{h,v}^E$;
$0 \le SXL_{h,d,j} \le QXL_{h,d,j}$	for all $d \in DX$, $j \in J_{h,d}^E$;
$0 \leq S10NXL_{h,d,j} \leq Q10NXL_{h,d,j}$	for all $d \in DX$, $j \in J_{h,d}^{10N}$;
$0 \leq S30RXL_{h,d,j} \leq Q30RXL_{h,d,j}$	for all $d \in DX$, $j \in J_{h,d}^{30R}$;
$0 \leq SNDG_{h,b,k} \leq QNDG_{h,b,k}$	for all $b \in B^{NDG}$, $k \in K_{h,b}^E$;
$0 \leq SVO_{h,v,k} \leq QVO_{h,v,k}$	for all $v \in VO$, $k \in K_{h,v}^E$;
$0 \leq SIG_{h,d,k} \leq QIG_{h,d,k}$	for all $d \in DI$, $k \in K_{h,d}^E$;
$0 \leq S10NIG_{h,d,k} \leq Q10NIG_{h,d,k}$	for all $d \in DI$, $k \in K_{h,d}^{10N}$; and
$0 \leq S30RIG_{h,d,k} \leq Q30RIG_{h,d,k}$	for all $d \in DI$, $k \in K_{h,d}^{30R}$

9.5.1.2 A dispatchable generation resource can be scheduled for energy and operating reserve only if its commitment status variable is equal to 1. For all hours $h \in \{1, ..., 24\}$:

$$0 \leq SDG_{h,b,k} \leq ODG_{h,b} \cdot QDG_{h,b,k} \qquad \qquad \text{for all } b \in B^{DG}, \ k \in K_{h,b}^E;$$

$$0 \leq S10SDG_{h,b,k} \leq ODG_{h,b} \cdot Q10SDG_{h,b,k} \quad \text{for all } b \in B^{DG}, \ k \in K_{h,b}^{10S};$$

$$0 \leq S10NDG_{h,b,k} \leq ODG_{h,b} \cdot Q10NDG_{h,b,k} \ \text{ for all } b \in B^{DG}, \ k \in K_{h,b}^{10N};$$
 and

$$0 \leq S30RDG_{h,b,k} \leq ODG_{h,b} \cdot Q30RDG_{h,b,k} \quad \text{for all } b \in B^{DG}, \ k \in K_{h,b}^{30R}$$

where

 $ODG_{h,b}$ is a fixed constant in the above constraints as per section 9.8.1.

- 9.5.2 Resource Minimums and Maximums
 - 9.5.2.1 The constraints in section 8.5.2 shall apply in the As-Offered Pricing algorithm.
- 9.5.3 Off-Market Transactions
 - 9.5.3.1 The constraints in section 8.5.3.1 and 8.5.3.2 shall apply in the As-Offered Pricing algorithm.
 - 9.5.3.2 In the case of *emergency energy* transactions, subject to section 9.5.3.3, the constraints in sections 8.5.3.3 and 8.5.3.4 shall apply in As-Offered Pricing algorithm.
 - 9.5.3.3 For all hours $h \in \{1, ..., 24\}$ and all *intertie zone* buses scheduled to import *emergency energy* that does not support an export $d \in DI_h^{EMNS}$.

$$\sum_{k \in K_{h,d}^E} SIG_{h,d,k} = 0.$$

- 9.5.4 Operating Reserve Requirements
 - 9.5.4.1 The constraints in section 8.5.4 shall apply in the As-Offered Pricing algorithm.
- 9.5.5 Pseudo-Units
 - 9.5.5.1 The constraints in section 8.5.5 shall apply in the As-Offered Pricing algorithm.
- 9.5.6 Dispatchable Hydroelectric Generation Resources

- 9.5.6.1 The constraints in section 8.5.6 shall apply in the As-Offered Pricing algorithm, with the following exceptions:
 - 9.5.6.1.1 *offer* laminations for *energy* corresponding to the *hourly must-run* amount shall be ineligible to set prices;
 - 9.5.6.1.2 *minimum hourly output* constraints shall be replaced by the constraints in section 9.8; and
 - 9.5.6.1.3 a dispatchable hydroelectric generation resource's schedule shall respect its forbidden regions and may only set prices within the operating range determined by the adjacent forbidden regions between which the resource was scheduled.

9.5.7 <u>Linked Wheeling Through Transactions</u>

9.5.7.1 The constraints in section 8.5.7 shall apply in the As-Offered Pricing algorithm.

9.6 Dispatch Data Inter-Hour/Multi-Hour Constraints

- 9.6.1 Energy Ramping
 - 9.6.1.1 The constraints in section 8.6.1 shall apply in the As-Offered Pricing algorithm.
- 9.6.2 Operating Reserve Ramping
 - 9.6.2.1 The constraints in section 8.6.2 shall apply in the As-Offered Pricing algorithm.
- 9.6.3 Energy Limited Resources
 - 9.6.3.1 The constraints in section 8.6.4 shall apply to *energy limited resources*. If the *maximum daily energy limit* is binding, then the constraints in section 9.8 shall apply.
- 9.6.4 Dispatchable Hydroelectric Generation Resources
 - 9.6.4.1 A dispatchable hydroelectric generation resource shall be scheduled for energy to at least its minimum daily energy limit. Violation variables for scheduling a resource below its minimum daily energy limit may be used to allow the day-ahead market calculation engine to find a solution. For all dispatchable hydroelectric generation resource buses $b \in B^{HE}$:

$$\begin{split} \sum_{h=1..24} \left(ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \right. \\ + \left. \sum_{i=1..N_{MinDelViol_h}} SMinDelViol_{h,b,i} \right) \geq MinDEL_b \end{split}$$

- 9.6.4.2 The constraints in section 9.8.3.3 shall apply to a *dispatchable* hydroelectric *generation resource* with a binding *minimum daily energy limit* in the As-Offered Scheduling algorithm in section 8.
- 9.6.4.3 The schedules for multiple *dispatchable* hydroelectric *generation* resources with a registered *forebay* shall respect shared *maximum daily* energy limits. Violation variables for scheduling resources above the maximum daily energy limit may be used to allow the day-ahead market calculation engine to find a solution. For all sets $s \in SHE$ and all hours $H \in \{1, ..., 24\}$:

$$\begin{split} \sum_{h=1..H} \left(\sum_{b \in B_S^{HE}} \left(ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \right) \right) \\ + \sum_{b \in B_S^{HE}} \left(10ORConv \left(\sum_{k \in K_{H,b}^{10S}} S10SDG_{H,b,k} \right) \right) \\ + \sum_{k \in K_{H,b}^{10N}} S10NDG_{H,b,k} \right) \\ + 30ORConv \left(\sum_{k \in K_{H,b}^{30R}} S30RDG_{H,b,k} \right) \\ - \sum_{i=1..N_{SMaxDelViol_H}} SSMaxDelViol_{H,s,i} \\ \leq MaxSDEL. \end{split}$$

where the factors 100RConv and 300RConv shall be applied to scheduled *ten-minute operating reserve* and *thirty-minute operating reserve* for *energy limited resources* to convert MW into MWh.

9.6.4.4 The schedules for multiple *dispatchable* hydroelectric *generation* resources with a registered *forebay* shall not violate shared *minimum daily* energy limits. Violation variables for scheduling resources below the

minimum daily energy limit may be used to allow the day-ahead market calculation engine to find a solution. For all sets $s \in SHE$:

$$\begin{split} \sum_{h=1..24} \left(\sum_{b \in B_S^{HE}} \left(ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \right) \\ + \sum_{i=1..N_{SMinDelViol_h}} SSMinDelViol_{h,s,i} \right) \geq MinSDEL_s \end{split}$$

9.7 Constraints for Reliability Requirements

- 9.7.1 Energy Balance
 - 9.7.1.1 The constraint in section 8.7.1 shall apply in the As-Offered Pricing algorithm, except the marginal loss factors used in the *energy* balance constraint in the As-Offered Pricing algorithm shall be fixed to the marginal loss factors used in the last optimization function iteration of the As-Offered Scheduling algorithm.
- 9.7.2 Operating Reserve Requirements
 - 9.7.2.1 The constraints in section 8.7.2 shall apply in the As-Offered Pricing algorithm.
- 9.7.3 IESO Internal Transmission Limits
 - 9.7.3.1 The constraints in section 8.7.3 shall apply in the As-Offered Pricing algorithm, except the sensitivities and limits considered shall be those provided by the most recent *security* assessment function iteration of the As-Offered Pricing algorithm.
- 9.7.4 Intertie Limits
 - 9.7.4.1 The constraints in section 8.7.4 shall apply in the As-Offered Pricing algorithm.
- 9.7.5 Penalty Price Variable Bounds
 - 9.7.5.1 The following constraints shall restrict the penalty price variables to the ranges determined by the constraint violation penalty curves for the pricing algorithm. For all $h \in \{1, ..., 24\}$:

```
0 \leq SLdViol_{h,i} \leq QLdViolPrc_{h,i}
                                                                                                                                                                                                                                                               for all i \in \{1, ..., N_{LdViol_h}\};
     0 \leq SGenViol_{h,i} \leq QGenViolPrc_{h,i}
                                                                                                                                                                                                                                                               for all i \in \{1, ..., N_{GenViol_i}\};
                                                                                                                                                                                                                                                               for all i \in \{1, \dots, N_{10SViol_h}\};
     0 \le S10SViol_{h,i} \le Q10SViolPrc_{h,i}
     0 \leq S10RViol_{h,i} \leq Q10RViolPrc_{h,i}
                                                                                                                                                                                                                                                               for all i \in \{1, ..., N_{10RViol_k}\};
     0 \leq S30RViol_{h,i} \leq Q30RViolPrc_{h,i}
                                                                                                                                                                                                                                                               for all i \in \{1, \dots, N_{30RViol_h}\};
     0 \le SREG10RViol_{r,h,i} \le QREG10RViolPrc_{h,i}
                                                                                                                                                                                                                                                             for all r \in ORREG, i \in \{1, ..., mathred n \in \{1,
     N_{REG10RViol_h}};
     0 \le SREG30RViol_{rh,i} \le QREG30RViolPrc_{h,i}
                                                                                                                                                                                                                                                             for all r \in ORREG, i \in \{1, ..., n\}
      N_{REG30RViol_h}};
      0 \leq SXREG10RViol_{r,h,i} \leq QXREG10RViolPrc_{h,i}
                                                                                                                                                                                                                                                             for all r \in ORREG, i \in \{1, ..., n\}
      N_{XREG10RViol_h}};
      0 \leq SXREG30RViol_{rhi} \leq QXREG30RViolPrc_{hi}
                                                                                                                                                                                                                                                             for all r \in ORREG, i \in \{1, ..., mathred n \in \{1,
     N_{XREG30RViol_h}};
      0 \leq SPreITLViol_{fhi} \leq QPreITLViolPrc_{fhi}
                                                                                                                                                                                                                                                             for all f \in F_h, i \in \{1, ..., m\}
     N_{PreITLViol_{fh}};
     0 \leq SITLViol_{c,f,h,i} \leq QITLViolPrc_{c,f,h,i}
                                                                                                                                                                                                                                                            for all c \in C, f \in F_{h,c}, i \in
      \{1,\ldots,N_{ITLViol_{c.f.h}}\};
     0 \le SPreXTLViol_{z,h,i} \le QPreXTLViolPrc_{z,h,i}
                                                                                                                                                                                                                                                             for all z \in Z_{Sch}, i \in \{1, ...,
     N_{PreXTLViol_{z,h}}};
     0 \leq SNIUViol_{h,i} \leq QNIUViolPrc_{h,i}
                                                                                                                                                                                                                                                             for all i \in \{1, ..., N_{NIUVioln}\};
                                                                                                                                                                                                                                                             for all i \in \{1, ..., N_{NIDViol_h}\};
     0 \leq SNIDViol_{h,i} \leq QNIDViolPrc_{h,i}
     0 \leq SMaxDelViol_{h,b,i} \leq QMaxDelViolPrc_{h,i}
                                                                                                                                                                                                                                                           for all b \in B^{ELR}, i \in \{1, ..., m\}
     N_{MaxDelViol_h}};
0 \le SMinDelViol_{h,b,i} \le QMinDelViolPrc_{h,i}
                                                                                                                                                                                                                                                             for all b \in B^{HE}, i \in \{1, ..., a\}
     N_{MinDelViol_h}};
     0 \leq SSMaxDelViol_{h,s,i} \leq QSMaxDelViolPrc_{h,i}
                                                                                                                                                                                                                                                            for all s \in SHE, i \in \{1, ...,
     N_{SMaxDelViol_h}; and
     0 \leq SSMinDelViol_{h.s.i} \leq QSMinDelViolPrc_{h,i}
                                                                                                                                                                                                                                                           for all s \in SHE i \in \{1, ..., a\}
     N_{SMinDelViol_h}.
```

9.8 Constraints to Ensure the Price Setting Eligibility Reflect Offer/Bid Laminations

9.8.1 Commitment Status Variables

9.8.1.1 Commitment decisions shall be fixed to the commitment statuses of resources calculated by the As-Offered Scheduling algorithm in section 8. For all hours $h \in \{1, ..., 24\}$ and all buses $b \in B^{DG}$:

$$ODG_{h,b} = ODG_{h,b}^{AOS}$$

9.8.2 Energy Limited Resources

For an energy limited resource with a maximum daily energy limit that was binding in the As-Offered Scheduling algorithm in section 8, the schedules calculated in the As-Offered Scheduling algorithm shall determine the price-setting eligibility of the resource's energy and operating reserve offer laminations. In each hour, energy or operating reserve laminations up to the total amount of energy and operating reserve scheduled in the As-Offered Scheduling algorithm shall be eligible to set prices. For bus $b \in B^{ELR}$, if there exists an hour $H \in \{1, ..., 24\}$ such that:

$$\begin{split} \sum_{h=1..H} \left(ODG_{h,b}^{AOS} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k}^{AOS} \right) \\ + 10ORConv \left(\sum_{k \in K_{H,b}^{1OS}} S10SDG_{H,b,k}^{AOS} \right) \\ + \sum_{k \in K_{H,b}^{1ON}} S10NDG_{H,b,k}^{AOS} \right) \\ + 30ORConv \left(\sum_{k \in K_{H,b}^{3OR}} S30RDG_{H,b,k}^{AOS} \right) = MaxDEL_{b,k} \end{split}$$

then the *maximum daily energy limit* constraint shall be considered binding in the As-Offered Scheduling algorithm. In such circumstances, the following constraints must hold for bus $b \in B^{ELR}$ for all hours $h \in \{1, ..., 24\}$:

$$\sum_{k \in K_{h,h}^{E}} SDG_{h,b,k} \ \leq \sum_{k \in K_{h,h}^{E}} SDG_{h,b,k}^{AOS} + \epsilon$$

$$\begin{split} \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \\ + \sum_{k \in K_{h,b}^{20R}} S30RDG_{h,b,k} & \leq MaxDEL_{b} - \sum_{\tau=1}^{h-1} \sum_{k \in K_{b,b}^{E}} SDG_{\tau,b,k}^{AOS} \end{split}$$

where ϵ is a small positive constant.

9.8.3 Dispatchable Hydroelectric Generation Resources

9.8.3.1 If a dispatchable hydroelectric generation resource is scheduled to provide energy at or above its minimum hourly output in the As-Offered Scheduling algorithm in section 8, such resource shall also be scheduled at or above its minimum hourly output in the As-Offered Pricing algorithm. The energy offer laminations corresponding to the minimum hourly output amount shall be ineligible to set prices. If a dispatchable hydroelectric generation resource with a minimum hourly output amount receives a zero schedule in the As-Offered Scheduling algorithm, the resource shall also receive a zero schedule in the As-Offered Pricing algorithm and shall be ineligible to set prices in the energy market. For all hours $h \in \{1, ..., 24\}$ and dispatchable hydroelectric generation resource buses $b \in B^{HE}$:

$$\begin{split} ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} &\geq MinHO_{h,b} \cdot OHO_{h,b}^{AOS} \\ \text{and for all } k \in K_{h,b}^E : \\ 0 &\leq SDG_{h,b,k} \leq OHO_{h,b}^{AOS} \cdot QDG_{h,b,k} \end{split}$$

9.8.3.2 For a *dispatchable* hydroelectric *generation resource* with a limited number of starts, such *resource* shall be scheduled such that it is limited to set prices within an operating range consistent with the number of starts utilized by the *resource*'s schedule determined by the As-Offered Scheduling algorithm in section 8. The *resource*'s schedule shall be between the same *start indication values* as determined in the As-Offered Scheduling algorithm. For all hydroelectric buses $b \in B^{HE}$ and all hours $h \in \{1, ..., 24\}$:

$$\begin{split} &\text{If } 0 \leq ODG_{h,b}^{AOS} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k}^{AOS} < StartMW_{b,1}, \\ &\text{then} \\ &0 \leq ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \leq StartMW_{b,1} - 0.1 \\ &\text{If } StartMW_{b,i} \leq ODG_{h,b}^{AOS} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k}^{AOS} < StartMW_{b,i+1} \text{ for } i \in \{1,\dots,(NStartMW_b-1)\}, \\ &\text{then} \\ &StartMW_{b,i} \leq ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \end{split}$$

$$\begin{split} StartMW_{b,i} &\leq ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \\ &\leq StartMW_{b,i+1} - 0.1 \end{split}$$

If $ODG_{h,b}^{AOS} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k}^{AOS} \geq StartMW_{b,NStartMW_b}$,

$$ODG_{h,b} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \ge StartMW_{b,NStartMW_b}$$

then

9.8.3.3 For a dispatchable hydroelectric generation resource with a minimum daily energy limit that was binding in the As-Offered Scheduling algorithm in section 8, the *energy* schedules calculated in the As-Offered Scheduling algorithm shall be ineligible to set prices. For all dispatchable hydroelectric generation resource buses $b \in B^{HE}$ such that $MinDEL_b > 0$ and

$$\sum_{h=1..24} \left(ODG_{h,b}^{AOS} \cdot MinQDG_b + \sum_{k \in K_{b,b}^E} SDG_{h,b,k}^{AOS} \right) \leq MinDEL_b$$

the following constraints shall apply for all hours $h \in \{1, ..., 24\}$ and offer laminations $k \in K_{h,b}^E$:

$$SDG_{h,b,k} \ge SDG_{h,b,k}^{AOS}$$

9.8.3.4 For a dispatchable hydroelectric generation resource with a shared minimum daily energy limit that was binding in the As-Offered Scheduling algorithm in section 8, the *energy* schedules calculated for all *resources* in the set $s \in SHE$ in the As-Offered Scheduling algorithm shall be ineligible to set prices. Thus, for all sets $s \in SHE$ such that:

$$\begin{split} \sum_{h=1..24} \left(\sum_{b \in B_S^{HE}} \left(ODG_{h,b}^{AOS} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k}^{AOS} \right) \right) \\ \leq MinSDEL_S \end{split}$$

the following constraints shall apply for all hours $h \in \{1, ..., 24\}$:

$$\begin{split} \sum_{b \in B_{S}^{HE}} & \left(ODG_{h,b} \cdot MinQDG_{b} + \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} \right) \\ & \geq \sum_{b \in B_{S}^{HE}} \left(ODG_{h,b}^{AOS} \cdot MinQDG_{b} + \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k}^{AOS} \right) \end{split}$$

- 9.8.3.5 For a *dispatchable* hydroelectric *generation resource* with a binding *maximum daily energy limit* in the As-Offered Scheduling algorithm in section 8, the schedules calculated in the As-Offered Scheduling algorithm shall determine the price-setting eligibility of the *resource's energy* and *operating reserve offer* laminations as described in section 9.8.2.
- 9.8.3.6 For a dispatchable hydroelectric generation resource with with a shared maximum daily energy limit that was binding in the As-Offered Scheduling algorithm in section 8, the schedules calculated in the As-Offered Scheduling algorithm shall determine the price-setting eligibility of the resource's offer laminations for energy and operating reserve. In each hour, the sum of energy schedules calculated in As-Offered Scheduling algorithm for all resources in each set $s \in SHE$ will be eligible to set prices. For each set $s \in SHE$, if there exists $H \in \{1,...,24\}$ such that:

$$\begin{split} \sum_{h=1..H} \left(\sum_{b \in B_{S}^{HE}} \left(ODG_{h,b}^{AOS} \cdot MinQDG_{b} + \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k}^{AOS} \right) \right) \\ + \sum_{b \in B_{S}^{HE}} \left(10ORConv \left(\sum_{k \in K_{H,b}^{10S}} S10SDG_{H,b,k}^{AOS} \right) \right) \\ + \sum_{k \in K_{H,b}^{10N}} S10NDG_{H,b,k}^{AOS} \right) \\ + 30ORConv \left(\sum_{k \in K_{H,b}^{30R}} S30RDG_{H,b,k}^{AOS} \right) \right) \\ = MaxSDEL_{S} \end{split}$$

then the *maximum daily energy limit* constraint shall be considered binding in the As-Offered Scheduling algorithm in section 8. In such circumstances, the following constraints shall apply for hours $h \in \{1, ..., 24\}$:

$$\begin{split} \sum_{b \in B_{S}^{HE}} \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} &\leq \sum_{b \in B_{S}^{HE}} \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k}^{AOS} + \epsilon, \\ \sum_{b \in B_{S}^{HE}} \left(\sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10S}} S10SDG_{h,b,k} + \sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \right. \\ &+ \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k} \right) \\ &\leq MaxSDEL_{S} - \sum_{b \in B_{S}^{HE}} \sum_{\tau=2}^{h-1} \sum_{k \in K_{b,b}^{E}} SDG_{\tau,b,k}^{AOS}. \end{split}$$

where ϵ is a small positive constant.

9.8.3.7 For a *dispatchable* hydroelectric *generation resource* for which a *MWh* ratio was respected in the As-Offered Scheduling algorithm in section 8, such resource shall be scheduled between its As-Offered Scheduling algorithm schedule plus or minus a tolerance Δ specified by the *IESO*. The resource schedule shall continue to be limited by its offer quantity bounds,

in section 9.5.1, and any applicable *resource* minimum or maximum constraints, in section 9.5.2. For all hours $h \in \{1, ..., 24\}$ and *dispatchable* hydroelectric *generation resource* buses $b \in B^{HE}$ such $b \in \{b_1, b_2\}$ where $b_1 \in B_{up}^{HE}$ and $b_2 \in B_{dn}^{HE}$ for some $(b_1, b_2) \in LNK$ with $h + Lag_{b_1, b_2} \le 24$:

$$\begin{split} & \max \left(0 \text{ , } ODG_{h,b}^{AOS} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k}^{AOS} - \Delta \text{ , } AdjMinDG_{h,b} \right) \\ & \leq ODG_{h,b}^{AOS} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \\ & \leq \min \left(MinQDG_b + \sum_{k \in K_{h,b}^E} QDG_{h,b,k} \text{ , } ODG_{h,b}^{AOS} \cdot MinQDG_b + \sum_{k \in K_{h,b}^E} SDG_{h,b,k}^{AOS} + \Delta \text{ , } \right) \\ & \leq \min \left(AdjMaxDG_{h,b} \right) \end{split}$$

9.9 Outputs

- 9.9.1 Outputs for the As-Offered Pricing algorithm include the following:
 - 9.9.1.1 shadow prices;
 - 9.9.1.2 locational marginal prices and their components; and
 - 9.9.1.3 sensitivity factors.

10 Constrained Area Conditions Test

10.1 Purpose

- 10.1.1 The Constrained Area Conditions Test shall:
 - 10.1.1.1 identify when and where competition is restricted; and
 - determine which *resources* shall have their *financial dispatch data* parameters be subject to the Conduct Test in section 11 and the thresholds above the *reference levels* that shall be used in the Conduct Test.

10.2 Information, Sets, Indices and Parameters

10.2.1 The sets and parameters associated with *narrow constrained areas* and *dynamic constrained areas* shall be identified in accordance with Appendix 7.8 and used by the Constrained Area Conditions Test.

- Information, sets, indices and parameters for the Constrained Area Conditions Test are described in sections 3 and 4. In addition, the following prices produced by the As-Offered Pricing algorithm shall be used by the Constrained Area Conditions Test:
 - 10.2.2.1 $LMP_{h,b}^{AOP}$, which designates the *locational marginal price* for bus $b \in B$ in hour $h \in \{1, ..., 24\}$;
 - 10.2.2.2 $PCong_{h,b}^{AOP}$, which designates the congestion component of the *locational* marginal price for bus $b \in B$ in hour $h \in \{1, ..., 24\}$;
 - 10.2.2.3 *ExtLMP*_{h,d}^{AOP}, which designates the *locational marginal price* for *intertie zone* bus $d \in D$ in hour $h \in \{1, ..., 24\}$;
 - 10.2.2.4 $PExtCong_{h,d}^{AOP}$, which designates the *intertie* congestion component of the *locational marginal price* for *intertie zone* bus $d \in D$ in hour $h \in \{1, ..., 24\}$;
 - 10.2.2.5 $PIntCong_{h,d}^{AOP}$, which designates the internal congestion component of the locational marginal price for intertie zone bus $d \in D$ in hour $h \in \{1, ..., 24\}$;
 - 10.2.2.6 *IntLMP*_{h,d}^{AOP}, which designates the *intertie border price* for *intertie zone* bus $d \in D$ in hour $h \in \{1, ..., 24\}$;
 - 10.2.2.7 *SPNorm* $T_{h,f}^{AOP}$, which designates the shadow price for the pre-contingency transmission constraint for *facility* $f \in F$ in hour $h \in \{1, ..., 24\}$;
 - 10.2.2.8 $SPEmT_{h,c,f}^{AOP}$, which designates the shadow price for the post-contingency transmission constraint for *facility* $f \in F$ in contingency $c \in C$ in hour h;
 - 10.2.2.9 *SPNIUExtBwdT*_h^{AOP}, which designates the shadow price for the net interchange scheduling limit constraint limiting increases in net imports between hour (h-1) and hour h;
 - 10.2.2.10 $L30RP_{h,b}^{AOP}$, which designates the *locational marginal price* for *thirty-minute operating reserve* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$;
 - 10.2.2.11 $L10NP_{h,b}^{AOP}$, which designates the *locational marginal price* for non-synchronized *ten-minute operating reserve* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$; and
 - 10.2.2.12 $L10SP_{h,b}^{AOP}$, which designates the *locational marginal price* for synchronized *ten-minute operating reserve* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$.

10.3 Variables

- 10.3.1 The *day-ahead market calculation engine* shall use the constrained area conditions in sections 10.4 and 10.5 to identify the *resources* that are part of the following data sets:
 - 10.3.1.1 *BCond*_h^{NCA}, which designates the *resources* in a *narrow constrained area* that must be checked for local market power for *energy* in hour $h \in \{1, ..., 24\}$;
 - 10.3.1.2 $BCond_h^{DCA}$, which designates the *resources* in a *dynamic constrained area* that must be checked for local market power for *energy* in hour $h \in \{1, ..., 24\}$;
 - 10.3.1.3 *BCond*_h^{BCA}, which designates the *resources* in a broad constrained area that must be checked for local market power for *energy* in hour $h \in \{1, ..., 24\}$;
 - 10.3.1.4 *BCond_h^{GMP}*, which designates the *resources* that must be checked for global market power for *energy* in hour $h \in \{1, ..., 24\}$;
 - 10.3.1.5 $BCond_h^{10S}$, which designates the *resources* that must be checked for local market power for synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$;
 - 10.3.1.6 *BCond*_h^{10N}, which designates the *resources* that must be checked for local market power for non-synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$;
 - 10.3.1.7 $BCond_h^{80R}$, which designates the *resources* that must be checked for local market power for *thirty-minute operating reserve* in hour $h \in \{1, ..., 24\}$;
 - 10.3.1.8 $BCond_h^{GMP10S}$, which designates the *resources* that must be checked for global market power for synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$;
 - 10.3.1.9 $BCond_h^{GMP10N}$, which designates the *resources* that must be checked for global market power for non-synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$; and
 - 10.3.1.10 $BCond_h^{GMP30R}$, which designates the *resources* that must be checked for global market power for *thirty minute operating reserve* in hour $h \in \{1, ..., 24\}$.

10.4 Constrained Area Conditions Test for Local Market Power (Energy)

- 10.4.1 Constrained Area Conditions Test for Narrow Constrained Areas and Dynamic Constrained Areas
 - 10.4.1.1 If at least one transmission constraint for a *narrow constrained area* or *dynamic constrained area* is binding in the As-Offered Pricing algorithm, then all *resources* identified within the *narrow constrained area* or *dynamic constrained area* area shall undergo the applicable Conduct Test in section 11 and:
 - 10.4.1.1.1 For each $n \in NCA$ and hour $h \in \{1, ..., 24\}$: For each transmission *facility* that transmits flow into $n, f \in F_n^{NCA}$, check if $SPNormT_{h,f}^{AOP} \neq 0$ or $SPEmT_{h,c,f}^{AOP} \neq 0$ for the inbound flow limit, the *day-ahead market calculation engine* will place n in the set NCA_h and assign the *resources* in n to the set $BCond_h^{NCA}$; and
 - 10.4.1.1.2 For each $d \in DCA$ and hour $h \in \{1, ..., 24\}$: For each transmission *facility* that transmits flow into $d, f \in F_d^{DCA}$, check if $SPNormT_{h,f}^{AOP} \neq 0$ or $SPEmT_{h,c,f}^{AOP} \neq 0$ for the inbound flow limit, *the day-ahead market calculation engine* will place d in the set DCA_h and assign the *resources* in d to the set $BCond_h^{DCA}$.
 - 10.4.1.2 Each *narrow constrained area* and *dynamic constrained area* that meets the criteria in section 10.4.1.1 shall be assigned to one of the following subsets, as appropriate:
 - 10.4.1.2.1 *NCA*_h' designates the *narrow constrained areas* that qualify for market power mitigation for *energy* in hour $h \in \{1, ..., 24\}$; and
 - 10.4.1.2.2 DCA_h ' designates the *dynamic constrained areas* that qualify for market power mitigation for *energy* in hour $h \in \{1,...,24\}$.
- 10.4.2 Constrained Area Conditions Test for Broad Constrained Areas
 - 10.4.2.1 If the congestion component of the *locational marginal price* for a *resource* is greater than *BCACondThresh*, and the *resource* is not part of a *narrow constrained area* or *dynamic constrained area* that has a binding transmission constraint, then the *resource* shall be tested for Conduct Test under the broad constrained area thresholds. For each hour $h \in \{1, ..., 24\}$ and bus $b \in B^{DG}$ such that $b \notin BCond_h^{NCA} \cup BCond_h^{DCA}$, if

 $PCong_{h,b}^{AOP} > BCACondThresh$, the day-ahead market calculation engine will place resource b in the set $BCond_h^{BCA}$.

10.5 Constrained Area Conditions Test for Global Market Power (Energy)

- 10.5.1 The *day-ahead market calculation engine* shall test *resources* that can meet incremental load within Ontario for global market power, subject to 10.5.2, if:
 - 10.5.1.1 the *intertie border prices* at the *global market power reference intertie* zones are greater than the specified threshold value, indicated in hour $h \in \{1, ..., 24\}$ by $IntLMP_{h,d}^{AOP} > IBPThresh$ for *bids* and *offers*, $d \in D^{GMPRef}$, corresponding to the *boundary entity resource* bus for the *global market power reference intertie zone*; and
 - 10.5.1.2 at least one of the following conditions is met:
 - import congestion, represented by a negative *intertie* congestion component, is present on all of the *global* market power reference interties, indicated in hour $h \in \{1, ..., 24\}$ by: $PExtCong_{h,d}^{AOP} < 0$ for bids and offers, $d \in D^{GMPRef}$, corresponding to the boundary entity resource bus for the global market power reference intertie zone; or
 - the net interchange schedule limit is binding for imports, represented by a non-zero net interchange schedule limit shadow price for incremental imports, indicated in hour $h \in \{1, ..., 24\}$ by: $SPNIUExtBwdT_h^{AOP} \neq 0$.
- If the conditions in sections 10.5.1 are met, then the *day-ahead market calculation* engine shall test resources that can meet incremental load within Ontario for global market power, for each hour $h \in \{1, ..., 24\}$, place all $b \in B^{DG}$ in the set $BCond_h^{GMP}$, unless they are excluded because of one of the following two conditions:
 - 10.5.2.1 the *resources* in any zone have congestion components at least \$1/MWh below the internal congestion component at all of the *global market power reference intertie zones*:
 - 10.5.2.1.1 if $PCong_{h,b}^{AOP} < PIntCong_{h,d}^{AOP} \$1/MWh$ where $d \in D^{GMPRef}$ is true for all *global market power reference intertie zones*; or
 - 10.5.2.2 the *resources* can not meet the incremental load because <u>of</u> a binding transmission constraint:

if resources can not cannot meet incremental load because of any binding transmission facility where $SPNormT_{h,f}^{AOP} \neq 0$ or $SPEmT_{h,c,f}^{AOP} \neq 0$.

10.6 Constrained Area Conditions Test for Local Market Power (Operating Reserve)

- Subject to section 10.6.1.3 for a regional minimum requirement of greater than zero for a specific class of *operating reserve*, then all *resources* within the region with *offers* for classes of *operating reserve* that can satisfy the requirements of the specific class of *operating reserve* shall be tested for local market power:
 - 10.6.1.1 A *resource* shall not qualify for local market power mitigation test for *operating reserve* if the *resource* is located in a region with a binding maximum constraint and for each *resource* $b \in B^{DG} \cup B^{DL}$ and hour $h \in \{1, ..., 24\}$:
 - 10.6.1.2 subject to section 10.6.1.3, if b is in a region with a non-zero minimum requirement, then b is subject to the Conduct Test and is placed in the set $BCond_h^{10S}$, $BCond_h^{10N}$, or $BCond_h^{30R}$; and
 - 10.6.1.3 if b is in a region with a binding maximum restriction constraint, then b is exempt from the Conduct Test.

10.7 Constrained Area Conditions Test for Global Market Power (Operating Reserve)

- 10.7.1 A resource shall be subject to global market power mitigation testing for operating reserve if its offers for a class of operating reserve where the locational marginal price for that class of operating reserve is greater than ORGCondThresh.
- Subject to section 10.7.3, if the condition in section 10.7.1 has been met for a class of operating reserve, then all resources with offers for classes of operating reserve that can satisfy the requirements of that class of operating reserve shall be tested and for each $b \in B^{DG} \cup B^{DL}$ and hour $h \in \{1, ..., 24\}$:
 - 10.7.2.1 if L10SP_{t,b}^{PDP} > ORGCondThresh, the *day-ahead market <u>calculation</u>*enginecalculation engine shall add <u>resource</u> b to BCond_t^{GMP10S};
 - 10.7.2.2 if L10NP_{t,b}^{PDP} > ORGCondThresh, the *day-ahead market calculation* engine shall add *resource* b to BCond_t^{GMP10N}; and
 - 10.7.2.3 if L30RP_{t,b}^{PDP} > ORGCondThresh, the *day-ahead market calculation* engine shall add resource b to $BCond_t^{GMP30R}$.

- 10.7.3 If *b* is in a region with a binding maximum constraint, then *b* shall be exempt from the Conduct Test.
 - 10.7.3.1 If a *resource* is located in a region with a binding regional maximum constraint, then the *resource* shall not qualify for global market power mitigation testing for *operating reserve*.

10.8 Outputs

10.8.1 Outputs of the Constrained Area Conditions Test include the list of *resources* that will be subject to the Conduct Test in section 11 and the thresholds that will be used in the Conduct Test for those *resources*.

11 Conduct Test

11.1 Purpose

11.1.1 The Conduct Test shall verify whether the *financial dispatch data parameter* values submitted by *registered market participants* for *resources* identified in section 10.8.1 are within the applicable threshold level of the corresponding *reference level values* for those *resources*.

11.2 Information, Sets, Indices and Parameters

11.2.1 Information, sets, indices and parameters used by the Conduct Test in section 11 are described in section 3. In addition, the list of *resources* produced pursuant to section 10.8.1 shall also be used by the Conduct Test.

11.3 Variables

- 11.3.1 The *day-ahead market calculation engine* shall apply the Conduct Test set out in sections 11.4 and 11.5 to the *resources* identified by the Constrained Area Conditions Test in accordance with section 10.8, to identify the following data sets:
 - 11.3.1.1 The sets of *resources* that failed the Conduct Test for at least one *financial dispatch data parameter*, where:
 - 11.3.1.1.1 BCT_h^{NCA} designates the *resources* in a *narrow constrained* area that failed the Conduct Test for at least one *financial* dispatch data parameter in hour $h \in \{1, ..., 24\}$;
 - 11.3.1.1.2 BCT_h^{DCA} designates the *resources* in a *dynamic constrained* area that failed the Conduct Test for at least one *financial* dispatch data parameter in hour $h \in \{1, ..., 24\}$;

- 11.3.1.1.3 BCT_h^{BCA} designates the *resources* in a broad constrained area that failed the Conduct Test for at least one *financial* dispatch data parameter in hour $h \in \{1, ..., 24\}$;
- 11.3.1.1.4 BCT_h^{GMP} designates the *resources* that failed the global market power for *energy* Conduct Test for at least one *financial dispatch data parameter* in hour $h \in \{1, ..., 24\}$;
- 11.3.1.1.5 BCT_h^{ORL} designates the *resources* that failed the local market power for *operating reserve* Conduct Test for at least one *financial dispatch data parameter* in hour $h \in \{1, ..., 24\}$; and
- 11.3.1.1.6 BCT_h^{ORG} designates the *resources* that failed the global market power Conduct Test for *operating reserve* for at least one *financial dispatch data parameter* in hour $h \in \{1,...,24\}$;
- 11.3.1.2 The following *financial dispatch data parameters* for all hours $h \in \{1, ..., 24\}$:
 - 11.3.1.2.1 $PARAME_{h,b}$ designates the set of dispatch data parameters that failed the energy Conduct Test at bus $b \in BCT_h^{NCA} \cup BCT_h^{DCA} \cup BCT_h^{BCA} \cup BCT_h^{GMP}$ in hour h, and may include the following dispatch data parameters:
 - 11.3.1.2.1.1 EnergyOffer_k designates the non-zero quantity of energy above the minimum loading point in association with offer lamination $k \in K_{h,h}^E$ failed the Conduct Test;
 - For all hours prior to and including the last hour where conditions are met for the *energy* Conduct Test:
 - 11.3.1.2.2.1 EnergyToMLP_k designates the non-zero quantity of energy up to the minimum loading point in association with offer lamination $k \in K_{h,b}^{LTMLP}$ failed the Conduct Test;
 - 11.3.1.2.2.2 *SUOffer* designates the *start-up offer* failed the Conduct Test; and
 - 11.3.1.2.2.3 *SNLOffer* designates the *speed no-load offer* failed the Conduct Test;

- 11.3.1.2.3 $PARAMOR_{h,b}$ designates the set of dispatch data parameters that failed the operating reserve Conduct Test at bus $b \in BCT_h^{ORL} \cup BCT_h^{ORG}$ in hour h, and may include the following dispatch data parameters:
 - 11.3.1.2.3.1 $OR10SOffer_k$ designates the non-zero quantity of synchronized ten-minute operating reserve in association with offer lamination $k \in K_{h,b}^{10S}$ failed the Conduct Test;
 - 11.3.1.2.3.2 $OR10NOffer_k$ designates the non-zero quantity of non-synchronized ten-minute operating reserve in association with offer lamination $k \in K_{h,b}^{10N}$ failed the Conduct Test;
 - 11.3.1.2.3.3 $OR30ROffer_k$ designates the non-zero quantity of thirty-minute operating reserve in association with offer lamination $k \in K_{h,b}^{30R}$ failed the Conduct Test; and
- 11.3.1.2.4 For all hours prior to and including the last hour where conditions are met for the *operating reserve* Conduct Test:
 - 11.3.1.2.4.1 *SUOffer* designates the *start-up offer* failed the Conduct Test;
 - 11.3.1.2.4.2 *SNLOffer* designates the *speed no-load offer* failed the Conduct Test; and
 - 11.3.1.2.4.3 EnergyToMLP_k designates the non-zero quantity of energy up to the minimum loading point in association with offer lamination $k \in K_{h,b}^E$ failed the Conduct Test.

11.4 Conduct Test for Energy

- 11.4.1 The *day-ahead market calculation engine* shall perform the Conduct Test for *energy* for *resources* in a *narrow constrained area* that were identified pursuant to section 10.8.1 as follows, subject to sections 11.4.2 and 11.4.3. For each hour $h \in \{1, ..., 24\}$ and $b \in BCond_h^{NCA}$, the *day-ahead market calculation engine* shall:
 - 11.4.1.1 Evaluate offers for energy above the minimum loading point: For all $k \in K_{h,b}^E$, if $PDG_{h,b,k} > CTEnMinOffer$ and $PDG_{h,b,k} > min(PDGRef_{h,b,k}^{-*}*(1 + CTEnThresh1^{NCA}), PDGRef_{h,b,k}^{-*}+ CTEnThresh2^{NCA})$, where $k' \in K_{h,b}^{'E}$, then the Conduct Test was failed for

- the *resource* at bus *b* and the *day-ahead market calculation engine* shall assign the *resource* to subset BCT_h^{NCA} and add $EnergyOffer_k$ to $PARAME_{h,b}$;
- 11.4.1.2 Evaluate *offers* for *energy* for the range of production up to the *minimum loading point*: For all hours prior to and including the hour that qualified to be tested under the Constrained Area Conditions Test, for all $k \in K_{h,b}^{LTMLP}$, if $PLTMLP_{h,b,k} > CTEnMinOffer$ and $PLTMLP_{h,b,k} > min(PLTMLPRef_{h,b,k} \cdot *(1+CTEnThresh1^{NCA}), PLTMLPRef_{h,b,k} \cdot + CTEnThresh2^{NCA})$, where $k' \in K_{h,b}^{'E}$, then the Conduct Test was failed for the *resource* at bus *b* and the *day-ahead market calculation engine* shall assign the *resource* to subset BCT_h^{NCA} and add $EnergyToMLP_k$ to $PARAME_{h,b}$ and $PARAMOR_{h,b}$;
- 11.4.1.3 Evaluate *start-up offers*: For all hours prior to and including the hour where conditions are met for the Constrained Area Conditions Test in section 10, if $SUDG_{h,b} > SUDGRef_{h,b}^*(1 + CTSUThresh^{NCA})$, then the Conduct Test was failed for the *resource* at bus *b* and the *day-ahead market calculation engine* shall assign the *resource* to subset BCT_h^{NCA} and add SUOffer to $PARAME_{h,b}$ and $PARAMOR_{h,b}$; and
- 11.4.1.4 Evaluate *speed no-load offers*: For all hours prior to and including the hour that meets the conditions test, if $SNL_{h,b} > SNLRef_{h,b}*(1 + CTSNLThresh^{NCA})$, then the Conduct Test was failed for the *resource* at bus *b* and the *day-ahead market calculation engine* shall assign the *resource* to subset BCT_h^{NCA} and add SNLOffer to $PARAME_{h,b}$ and $PARAMOR_{h,b}$.
- For resources identified pursuant to section 10.8.1 in a dynamic constrained area or broad constrained area, the day-ahead market calculation engine shall use the steps in section 11.4.1, using resources in BCond_hDCA or BCond_hBCA, as the case may be, in place of BCond_hCA and using the applicable Conduct Test thresholds CTEnThresh1DCA, CTEnThresh2DCA, CTEnThresh1BCA, CTEnThresh2BCA, CTSUThreshBCA, CTSUTThreshBCA, CTSU
- 11.4.3 For *resources* identified pursuant to section 10.8.1 that were selected for global market power mitigation testing for *energy*, the *day-ahead market calculation engine* shall use the steps in section 11.4.1, using *resources* in *BCond*_h^{GMP} in place of *BCond*_h^{NCA} and the applicable global market power Conduct Test thresholds *CTEnThresh*1 ^{GMP}, *CTEnThresh*2 ^{GMP}, *CTSUThresh*^{GMP}, *CTSNLThresh*^{GMP}. If any of the applicable *financial dispatch data parameters* of a *resource* fails the Conduct Test, the *resource* shall be assigned to subset *BCT*_h^{GMP}.

11.4.4 If a *resource* is assigned to more than one of the sets, $BCond_h^{NCA}$, $BCond_h^{DCA}$, $BCond_h^{BCA}$, and $BCond_h^{GMP}$, only the Conduct Test with the most restrictive threshold levels shall be performed for that *resource*.

11.5 Conduct Test for Operating Reserve

- 11.5.1 The *day-ahead market calculation engine* shall perform the Conduct Test for local market power for *operating reserve* for *resources* that were identified pursuant to section 10.8.1, as follows, subject to 11.5.3. For each hour $h \in \{1, ..., 24\}$ and $b \in BCond_h^{10S} \cup BCond_h^{10N} \cup BCond_h^{10R}$, the *day-ahead market calculation engine* shall:
 - 11.5.1.1 Evaluate *offers* for *operating* reserve as follows:
 - 11.5.1.1.1 for all $k \in K_{h,b}^{10S}$ $P10SDG_{h,b,k} > min(P10SDGRef_{h,b,k})^* * (1 + CTORThresh_2^{ORL}), P10SDGRef_{h,b,k} + CTORThresh_2^{ORL}), h,b, then where <math>k' \in K_{h,b}^{'10S}$, then the Conduct Test was failed for the resource at bus b and the day-ahead market calculation engine shall assign the resource to subset BCT_h^{ORL} and add $OR10SOffer_k$ to $PARAMOR_{h,b}$;
 - 11.5.1.1.2 for all $k \in K_{h,b}^{10N}$ if $P10NDG_{h,b,k} > CTORMinOffer$ and $P10NDG_{h,b,k} > min (P10NDGRef_{h,b,k}.^*(1 + CTORThresh1^{ORL}), P10NDGRef_{h,b,k}.^+ + CTORThresh2^{ORL})$, where $k' \in K_{h,b}^{'10N}$, then the Conduct Test was failed for the resource at bus b and the day-ahead market calculation engine shall assign the resource to subset BCT_h^{ORL} and add $OR10NOffer_k$ to $PARAMOR_{h,b}$; and
 - 11.5.1.1.3 for all $k \in K_{h,b}^{30R}$ if $P30RDG_{h,b,k} > CTORMinOffer$ and $P30RDG_{h,b,k} > min(P30RDGRef_{h,b,k}) * (1 + CTORThresh1^{ORL})$, $P30RDGRef_{h,b,k} + CTORThresh2^{ORL})$, where $k' \in K_{h,b}'^{30R}$, then the Conduct Test was failed for the resource at bus b and the day-ahead market calculation engine shall assign the resource to subset BCT_h^{ORL} and add OR30ROffer_k to PARAMOR_{h,b};
 - 11.5.1.1.4 for all $j \in J_{h,b}^{10S}$ if $P10SDL_{h,b,j} > CTORMinOffer$ and $P10SDL_{h,b,j} > min(P10SDLRef_{h,b,j})^* (1 + CTORThresh1^{ORL}),$ $P10SDLRef_{h,b,j} + CTORThresh2^{ORL})$, where $j' \in J_{h,b}^{10S}$, then the Conduct Test was failed for the *dispatchable load* at bus b and the *day-ahead market calculation engine* shall assign the

- resource to subset BCT_h^{ORL} and add $OR10SOffer_k$ to $PARAMOR_{h,b}$;
- 11.5.1.1.5 for all $j \in J_{h,b}^{10N}$ if $P10NDL_{h,b,j} > CTORMinOffer$ and $P10NDG_{h,b,j} > min(P10NDLRef_{h,b,j})^*(1 + CTORThresh1^{ORL}),$ $P10NDLRef_{h,b,j} + CTORThresh2^{ORL})$, where $j' \in J_{h,b}^{'10N}$, then the Conduct Test was failed for the *dispatchable load* at bus b and the *day-ahead market calculation engine* shall assign the *resource* to subset BCT_h^{ORL} and add $OR10NOffer_k$ to $PARAMOR_{h,b}$; and
- 11.5.1.1.6 for all $j \in J_{h,b}^{30R}$ if $P30RDL_{h,b,j} > CTORMinOffer$ and $P30RDL_{h,b,j} > min(P30RDLRef_{h,b,j}, *(1 + CTORThresh1^{ORL}),$ $P30RDLRef_{h,b,j}, + CTORThresh2^{ORL})$, where $j' \in J_{h,b}^{\prime 30R}$, then the Conduct Test was failed for the *dispatchable load* at bus b and the *day-ahead market calculation engine* shall assign the resource to subset BCT_h^{ORL} and add $OR30ROffer_k$ to $PARAMOR_{h,b}$;
- Evaluate *start-up offers*: For all hours prior to and including the hour that meets the Constrainted Area Conditions Test, if $SUDG_{h,b} > SUDGRef_{h,b}*(1 + CTSUThresh^{ORL})$, then the Conduct Test was failed for the *resource* at bus *b* and the *day-ahead market calculation engine* shall assign the *resource* to subset BCT_h^{ORL} and add SUOffer to $PARAMOR_{h,b}$ and $PARAME_{h,b}$;
- 11.5.1.3 Evaluate *speed no-load offers*: For all hours prior to and including the hour that meets the conditions test, if $SNL_{h,b} > SNLRef_{h,b} * (1 + CTSNLThresh^{ORL})$, then the Conduct Test was failed for the *resource* at bus *b* and the *day-ahead market calculation engine* shall assign the *resource* to subset BCT_h^{ORL} and add SNLOffer to $PARAMOR_{h,b}$ and $PARAME_{h,b}$; and
- 11.5.1.4 Evaluate offers for energy for the range of production up to the minimum loading point: For all hours prior to and including the hour that meets the conditions test, for all $k \in K_{h,b}^{LTMLP}$, if $PLTMLP_{h,b,k} > CTEnMinOffer$ and $PLTMLP_{h,b,k} > min(PLTMLPRef_{h,b,k},^*(1 + CTEnThresh1^{ORL}),$ $PLTMLPRef_{h,b,k},^* + CTEnThresh2^{ORL})$, where $k' \in K_{h,b}^{E}$, then the Conduct Test was failed for the resource at bus b and the day-ahead market calculation engine shall assign the resource to subset BCT_h^{ORL} and add $EnergyToMLP_k$ to $PARAMOR_{h,b}$ and $PARAME_{h,b}$.

- The day-ahead market calculation engine shall perform the Conduct Test for global market power for operating reserve for resources that were identified pursuant to section 10.8.1. The day-ahead market calculation engine shall use the steps set out in section 11.5.1 using resources in $BCond_h^{GMP10S}$, $BCond_h^{GMP10N}$, and $BCond_h^{GMP30R}$ in place of $BCond_h^{10S}$, $BCond_h^{10N}$, and $BCond_h^{80R}$, respectively, and the applicable Conduct Test thresholds $CTORThresh1^{ORG}$, $CTORThresh2^{ORG}$, $CTSUThresh^{ORG}$, $CTSNLThresh^{ORG}$, $CTEnThresh1^{ORG}$, $CTEnThresh2^{ORG}$. The resources shall be assigned to the subset BCT_h^{ORG} .
- If a *resource* is assigned to more than one of $BCond_h^{GMP10S}$, $BCond_h^{GMP10N}$, and $BCond_h^{GMP30R}$, only the Conduct Test with the most restrictive threshold levels shall be performed for that *resource*.

11.6 Outputs

- Subject to section 11.6.2, the outputs of the Conduct Test shall include the following for each hour $h \in \{1, ..., 24\}$:
 - 11.6.1.1 The set of *resources* that failed the Conduct Test for at least one *financial* dispatch data parameter by condition type;
 - 11.6.1.2 The *financial dispatch data parameters* that failed the Conduct Test for the *resource* at bus *b*; and
 - 11.6.1.3 A revised set of *financial dispatch data parameters* for *resources* that failed a Conduct Test with *dispatch data* parameters that failed the Conduct Test replaced with *reference level values*. For *offers* for *energy* and *operating reserve* with multiple laminations:
 - if the *offer* lamination for *energy* that corresponds to the *minimum loading point* fails the Conduct Test, the *day-ahead market calculation engine* shall replace all *offer* laminations for *energy* up to the *minimum loading point*;
 - if one or more *offer* laminations for *energy* above the *minimum loading point* fails the Conduct Test, the *day-ahead market calculation engine* shall replace all *offer* laminations for *energy* up to and above the *minimum loading point*; and
 - 11.6.1.3.3 if one or more *offer* laminations for *operating reserve* fails the Conduct Test, the *day-ahead market calculation engine* shall replace all *offer* laminations for *operating reserve*.
- The *day-ahead market calculation engine* shall not replace the *financial dispatch data* parameter for a resource with that resource's applicable reference level value if the

financial dispatch data parameter is less than the corresponding reference level value.

12 Reference Level Scheduling

12.1 Purpose

- 12.1.1 The *day-ahead market calculation engine* shall perform the Reference Level Scheduling algorithm where at least one *financial dispatch data parameter* for a *resource* failed the Conduct Test in section 11.
- 12.1.2 The Reference Level Scheduling algorithm shall perform a *security*-constrained unit commitment and economic *dispatch* to maximize gains from trade using *dispatch* data submitted by registered market participants, including reference level value for resources subject to section 12.2.2, to meet the *IESO*'s average province-wide non-dispatchable demand forecast and *IESO*-specified operating reserve requirements for each hour of the next dispatch day.

12.2 Information, Sets, Indices and Parameters

- 12.2.1 Information, sets, indices and parameters used by the Reference Level Scheduling algorithm are described in section 3 and 4. In addition, the list of *resources* that failed the Conduct Test from section 11.6.1.1 and a revised set of *financial dispatch data* parameters from section 11.6.1.3, for those *resources* shall be used by the Reference Level Scheduling algorithm.
- 12.2.2 The Reference Level Scheduling algorithm shall use the *reference level value* that corresponds to any *financial dispatch data parameter* submitted for a *resource* that failed the Conduct Test.

12.3 Variables and Objective Function

- 12.3.1 The *day-ahead market calculation engine* shall solve for the variables listed in section 8.3.1.
- 12.3.2 The objective function for the Reference Level Scheduling algorithm shall be the same as the objective function in section 8.3.2, subject to section 12.4.

12.4 Constraints

12.4.1 The constraints in sections 8.4 through 8.7 apply in the Reference Level Scheduling algorithm, except that the sensitivities and limits considered for *IESO* internal transmission limits shall be those provided by the most recent *security* assessment function iteration of the Reference Level Scheduling algorithm.

12.5 Outputs

12.5.1 Outputs of the Reference Level Scheduling algorithm include *resource* schedules and commitments.

13 Reference Level Pricing

13.1 Purpose

- 13.1.1 The *day-ahead market calculation engine* shall perform the Reference Level Pricing algorithm whenever the Reference Level Scheduling algorithm has been performed.
- 13.1.2 The Reference Level Pricing algorithm shall perform a *security*-constrained economic *dispatch* to maximize gains from trade using *dispatch data* submitted by *registered market participants, reference level values* for *resources* subject to section 13.2.2, and *resource* schedules and commitments produced by the Reference Level Scheduling algorithm, to meet the *IESO's* average province-wide non-*dispatchable demand* forecast and *IESO*-specified *operating reserve* requirements for each hour of the next *dispatch day*.

13.2 Information, Sets, Indices and Parameters

- Information, sets, indices and parameters used by the Reference Level Pricing algorithm are described in sections 3 and 4. In addition, the following *resource* schedule and commitments from the Reference Level Scheduling algorithm shall be used by the Reference Level Pricing algorithm:
 - 13.2.1.1 $SDG_{h,b,k}^{RLS}$, which designates the amount of *energy* that a *dispatchable* generation resource is scheduled to provide above $MinQDG_b$ at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{E}$;
 - 13.2.1.2 $ODG_{h,b}^{RLS}$ designates whether the *dispatchable generation resource* at bus $b \in B^{DG}$ was scheduled at or above its *minimum loading point* in hour $h \in \{1, ..., 24\}$;
 - 13.2.1.3 $S10SDG_{h,b,k}^{RLS}$, which designates the amount of synchronized *ten-minute* operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10S}$;
 - 13.2.1.4 $S10NDG_{h,b,k}^{RLS}$ which designates the amount of non-synchronized *ten-minute operating reserve* that a *dispatchable generation resource* is

- scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,h}^{10N}$;
- 13.2.1.5 $S30RDG_{h,b,k}^{RLS}$, which designates the amount of *thirty-minute operating* reserve that a *dispatchable generation resource* is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{30R}$; and
- 13.2.1.6 $OHO_{h,b}^{RLS}$, which designates whether the *dispatchable* hydroelectric *generation resource* at bus $b \in B^{HE}$ has been scheduled at or above $MinHO_{h,b}$ in hour $h \in \{1, ..., 24\}$.
- 13.2.2 The Reference Level Pricing algorithm shall use a *resource's reference level value* for any *financial dispatch data parameters* submitted by *registered market participants* that failed the Conduct Test.

13.3 Variables and Objective Function

- 13.3.1 The *day-ahead market calculation engine* shall solve for the variables set out in section 9.3.1.
- 13.3.2 The objective function used in the Reference Level Pricing algorithm shall be the same as the objective function set out in section 9.3.2, subject to section 13.4.

13.4 Constraints

- 13.4.1 The constraints that apply in the Reference Level Pricing algorithm shall be the same as the constraints in sections 9.4 through 9.8, with the following exceptions:
 - 13.4.1.1 the marginal loss factors used in the *energy* balance constraint in section 9.7.1 shall be fixed to the marginal loss factors used in the last optimization function iteration of the Reference Level Scheduling alogorithm;
 - 13.4.1.2 the sensitivities and limits in section 9.7.3 shall be replaced with the most recent *security* assessment function iteration of the Reference Level Pricing algorithm; and
 - 13.4.1.3 for the constraints in section 9.8, the outputs from the As-Offered Scheduling algorithm shall be replaced with the outputs from the Reference Level Scheduling algorithm as follows:
 - 13.4.1.3.1 $SDG_{h,b,k}^{AOS}$ shall be replaced by $SDG_{h,b,k}^{RLS}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{E}$;

- 13.4.1.3.2 $ODG_{h,b}^{AOS}$ shall be replaced by $ODG_{h,b}^{RLS}$ for all $h \in \{1, ..., 24\}, b \in B^{DG}$;
- 13.4.1.3.3 $S10SDG_{h,b,k}^{AOS}$ shall be replaced by $S10SDG_{h,b,k}^{RLS}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{10S};$
- 13.4.1.3.4 $S10NDG_{h,b,k}^{AOS}$ shall be replaced by $S10NDG_{h,b,k}^{RLS}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{10N};$
- 13.4.1.3.5 $S30RDG_{h,b,k}^{AOS}$ shall be replaced by $S30RDG_{h,b,k}^{RLS}$ for all $h \in \{1, ..., 24\}$, $b \in B^{ELR} \cup B^{HE}$, $k \in K_{h,b}^{30R}$; and
- 13.4.1.3.6 $OHO_{h,b}^{AOS}$ shall be replaced by $OHO_{h,b}^{RLS}$ for all $h \in \{1, ..., 24\}, b \in B^{HE}$.

13.5 Outputs

- 13.5.1 Outputs of the Reference Level Pricing algorithm include the following:
 - 13.5.1.1 shadow prices; and
 - 13.5.1.2 *locational marginal prices* and their components.

14 Price Impact Test

14.1 Purpose

- 14.1.1 The *day-ahead market calculation engine* shall perform the Price Impact Test whenever at least one *financial dispatch data parameter* for a *resource* failed the Conduct Test.
- 14.1.2 The Price Impact Test shall:
 - 14.1.2.1 compare the *locational marginal prices* for *energy* or *operating reserve* produced by the As-Offered Pricing algorithm with those produced by the Reference Level Pricing algorithm; and
 - 14.1.2.2 consider the corresponding *offer* parameters to have failed the Price Impact Test if the difference in price in section 14.1.2.1 is greater than the applicable impact threshold in section 4.3.8.

14.2 Information, Sets, Indices and Parameters

- 14.2.1 Information, sets, indices and parameters for the Price Impact Test are described in sections 3 and 4. In addition, the following *locational marginal prices* from the As-Offered Pricing algorithm and the Reference Level Pricing algorithm shall be used by the Price Impact Test:
 - 14.2.1.1 $LMP_{h,b}^{AOP}$, which designates the *locational marginal price* for *energy* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$ from the As-Offered Pricing algorithm;
 - 14.2.1.2 $L30RP_{h,b}^{AOP}$, which designates the *locational marginal price* for *thirty-minute operating reserve* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$ from the As-Offered Pricing algorithm;
 - 14.2.1.3 $L10NP_{h,b}^{AOP}$, which designates the *locational marginal price* for non-synchronized *ten-minute operating reserve* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$ from the As-Offered Pricing algorithm;
 - 14.2.1.4 $L10SP_{h,b}^{AOP}$, which designates the *locational marginal price* for synchronized *ten-minute operating reserve* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$ from the As-Offered Pricing algorithm;
 - 14.2.1.5 $LMP_{h,b}^{RLP}$, which designates the *locational marginal price* for *energy* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$ from the Reference Level Pricing algorithm;
 - 14.2.1.6 $L30RP_{h,b}^{RLP}$, which designates the *locational marginal price* for *thirty-minute operating reserve* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$ from the Reference Level Pricing algorithm;
 - 14.2.1.7 $L10NP_{h,b}^{RLP}$, which designates the *locational marginal price* for non-synchronized *ten-minute operating reserve* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$ from the Reference Level Pricing algorithm; and
 - 14.2.1.8 $L10SP_{h,b}^{RLP}$, which designates the *locational marginal price* for synchronized *ten-minute operating reserve* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$ from the Reference Level Pricing algorithm.

14.3 Variables

- 14.3.1 The *day-ahead market calculation engine* shall apply the Price Impact Test as set out in sections 14.4 and 14.5 for the *resources* identified in accordance with section 10.3.1, to identify:
 - 14.3.1.1 A set of *resources* that failed the Price Impact Test for each condition for all hours $h \in \{1, ..., 24\}$, where:

- 14.3.1.1.1 *BITh*^{NCA} designates the *resources* in a *narrow constrained* area that failed the Price Impact Test for the *locational* marginal price for energy;
- 14.3.1.1.2 BIT_h^{DCA} designates the resources in a dynamic constrained area that failed the Price Impact Test for the locational marginal price for energy;
- 14.3.1.1.3 *BIT_h^{BCA}* designates the *resources* in a broad constrained area that failed the Price Impact Test for the *locational marginal price* for *energy*;
- 14.3.1.1.4 *BIT_h^{GMP}* designates the *resources* that failed the global market power (*energy*) Price Impact Test for the *locational marginal price* for *energy*;
- 14.3.1.1.5 *BITh* designates the *resources* that failed the local market power (*operating reserve*) Price Impact Test for at least one type of *locational marginal price* for *operating reserve*;
- 14.3.1.1.6 *BITh* designates the *resources* that failed the global market power (*operating reserve*) Price Impact Test for at least one type of *locational marginal price* for *operating reserve*; and
- 14.3.1.1.7 $LMPIT_{h,b}$ designates the locational marginal price that failed the Price Impact Test for bus $b \in BIT_h^{NCA} \cup BIT_h^{DCA} \cup BIT_h^{DCA} \cup BIT_h^{GMP} \cup BIT_h^{ORL} \cup BIT_h^{ORG}$ in hour h; and
- 14.3.1.2 Locational marginal prices for energy and operating reserve for each resource at bus $b \in B^{DG} \cup B^{DL}$ that failed the Price Impact Test, where:
 - 14.3.1.2.1 *EnergyLMP* designates that the *locational marginal price* for *energy* failed the Price Impact Test;
 - 14.3.1.2.2 *OR*10*SLMP* designates that the *locational marginal price* for synchronized *ten-minute operating reserve* failed the Price Impact Test;
 - 14.3.1.2.3 *OR*10*NLMP* designates that the *locational marginal price* for non-synchronized *ten-minute operating reserve* failed the Price Impact Test; and

14.3.1.2.4 *OR*30*RLMP* designates that the *locational marginal price* for *thirty-minute operating reserve* failed the Price Impact Test.

14.4 Price Impact Test for Energy

- 14.4.1 The *day-ahead market calculation engine* shall perform the Price Impact Test for *resources* that were identified in the corresponding Conduct Test for *energy* in section 11.6.1.1, as follows:
 - 14.4.1.1 For local market power for *energy*:
 - 14.4.1.1.1 For each hour $h \in \{1, ..., 24\}$ and $b \in BCT_h^{NCA}$, if $LMP_{h,b}^{AOP} > min(LMP_{h,b}^{RLP}*(1+ITThresh1^{NCA}), LMP_{h,b}^{RLP} + ITThresh2^{NCA})$, the Price Impact Test was failed by the resource at bus b and the day-ahead market calculation engine shall assign the resource to subset BIT_h^{NCA} and add EnergyLMP to $LMPIT_{h,b}$;
 - 14.4.1.1.2 For each hour $h \in \{1, ..., 24\}$ and $b \in BCT_h^{DCA}$, if $LMP_{h,b}^{AOP} > min(LMP_{h,b}^{RLP}*(1+ITThresh1^{DCA})$, $LMP_{h,b}^{RLP}+ITThresh2^{DCA}$), the Price Impact Test was failed by the *resource* at bus b and the *day-ahead market* calculation engine shall assign the *resource* to subset BIT_h^{DCA} and add EnergyLMP to $LMPIT_{h,b}$; and
 - 14.4.1.1.3 For each hour $h \in \{1, ..., 24\}$ and $b \in BCT_h^{BCA}$, if $LMP_{h,b}^{AOP} > min(LMP_{h,b}^{RLP}*(1+ITThresh1^{BCA})$, $LMP_{h,b}^{RLP}+ITThresh2^{BCA}$), the Price Impact Test was failed by the *resource* at bus b and the *day-ahead market* calculation engine shall assign the *resource* to subset BIT_h^{BCA} and add EnergyLMP to $LMPIT_{h,b}$.
 - 14.4.1.2 For global market power for *energy*:
 - 14.4.1.2.1 For each hour $h \in \{1, ..., 24\}$ and $b \in BCT_h^{GMP}$, if $LMP_{h,b}^{AOP} > min(LMP_{h,b}^{RLP}*(1+ITThresh1^{GMP})$, $LMP_{h,b}^{RLP}+ITThresh2^{GMP}$), the Price Impact Test was failed by the *resource* at bus b and the *day-ahead market* calculation engine shall assign the *resource* to subset BIT_h^{GMP} and add EnergyLMP to $LMPIT_{h,b}$.

14.5 Price Impact Test for Operating Reserve

- 14.5.1 The *day-ahead market calculation engine* shall perform the Price Impact Test for *resources* that were identified in the corresponding Conduct Test for *operating reserve* in section 11.6.1.1, as follows:
 - 14.5.1.1 For local market power for *operating reserve*, for each hour $h \in \{1, ..., 24\}$ and $b \in BCT_h^{ORL}$:
 - 14.5.1.1.1 If $L30RP_{h,b}^{AOP} > L30RP_{h,b}^{RLP}$, then the Price Impact Test was failed by the *resource* at bus *b* and the *day-ahead market* calculation engine shall assign the *resource* to subset BIT_h^{ORL} and add OR30RLMP to $LMPIT_{h,b}$;
 - 14.5.1.1.2 If $L10NP_{h,b}^{AOP} > L10NP_{h,b}^{RLP}$, then the Price Impact Test was failed by the *resource* at bus *b* and the *day-ahead market* calculation engine shall assign the *resource* to subset BIT_h^{ORL} and add OR10NLMP to $LMPIT_{h,b}$; and
 - 14.5.1.1.3 If $L10SP_{h,b}^{AOP} > L10SP_{h,b}^{RLP}$, then the Price Impact Test was failed by the *resource* at bus *b* and the *day-ahead market calculation engine* shall assign the *resource* to subset BIT_h^{ORL} and add OR10SLMP to $LMPIT_{h,b}$.
 - 14.5.1.2 For global market power for *operating reserve*, for each hour $h \in \{1, ..., 24\}$ and $b \in BCT_h^{ORG}$:
 - 14.5.1.2.1 If $L30RP_{h,b}^{AOP} > min(L30RP_{h,b}^{RLP*} (1+ITThresh1^{ORG}),$ $L30RP_{h,b}^{RLP} + ITThresh2^{ORG})$, then the Price Impact Test was failed by the *resource* at bus *b* and the *day-ahead market* calculation engine shall assign the *resource* to subset BIT_h^{ORG} and add OR30RLMP to $LMPIT_{h,b}$;
 - 14.5.1.2.2 If $L10NP_{h,b}^{AOP} > min(L10NP_{h,b}^{RLP}*(1+ITThresh1^{ORG}),$ $L10NP_{h,b}^{RLP}+ITThresh2^{ORG})$, then the Price Impact Test was failed by the *resource* at bus *b* and the *day-ahead market calculation engine* shall assign the *resource* to subset BIT_h^{ORG} and add OR10NLMP to $LMPIT_{h,b}$; and
 - 14.5.1.2.3 If $L10SP_{h,b}^{AOP} > min(L10SP_{h,b}^{RLP*}(1+ITThresh1^{ORG}),$ $L10SP_{h,b}^{RLP}+ITThresh2^{ORG})$, then the Price Impact Test was failed by the *resource* at bus *b* and *the day-ahead market* calculation engine shall assign the *resource* BIT_h^{ORG} and add OR10SLMP to $LMPIT_{h,b}$.

14.6 Revised Financial Dispatch Data Parameter Determination

- 14.6.1.1 A resource that fails the Price Impact Test shall have its *financial dispatch data* parameters revised as follows:
 - 14.6.1.1 If the *resource* has failed a Price Impact Test for *energy* and is in BIT_h^{NCA} , BIT_h^{DCA} , BIT_h^{BCA} , or BIT_h^{GMP} , the *dispatch data* parameters in $PARAME_{h,b}$ shall be used to determine the *dispatch data* parameters that shall be replaced.
 - 14.6.1.2 If the *resource* has failed a Price Impact Test for *operating reserve* and is in BIT_h^{ORL} or BIT_h^{ORG} , the *dispatch data* parameters in $PARAMOR_{h,b}$ shall be used to determine the *dispatch data* parameters that shall be replaced.
 - 14.6.1.3 If a non-quick-start resource has failed a Price Impact Test in any hour, the commitment cost parameters that failed the corresponding Conduct Test shall be replaced with the resource's applicable reference level value for that hour. For any hours prior, any commitment cost parameters for that resource that failed the Conduct Test shall be replaced with the resource's applicable reference level values in those hours. This is expressed as:
 - 14.6.1.3.1 For each hour $h \in \{1, ..., 24\}$ and all $b \in B^{NQS}$ such that $b \in BIT_h^{NCA} \cup BIT_h^{DCA} \cup BIT_h^{BCA} \cup BIT_h^{GMP}$, for hours prior to and including the hour that failed the Price Impact Test, $H \in \{1, ..., h\}$, if $b \in BCT_H^{NCA} \cup BCT_H^{DCA} \cup BCT_H^{BCA} \cup BCT_H^{BCA} \cup BCT_H^{GMP}$ and $PARAME_{H,b}$ contains any of the *commitment cost parameters SUOffer*, SNLOffer, or $EnergyToMLP_k$, these parameters shall be replaced with Parameters SUOffer.
 - 14.6.1.4 Section 14.6.1.3 shall apply to the tests for local market power and global market power for *operating reserve*, except $PARAMOR_{H,b}$ shall be checked in place of $PARAME_{H,b}$.
 - 14.6.1.5 If a resource is in a narrow constrained area or a dynamic constrained area and has failed a Price Impact Test, each resource in the same narrow constrained area or dynamic constrained area that also failed the corresponding Conduct Test shall have its offer data replaced with its applicable reference level value for that hour. For each hour $h \in \{1, ..., 24\}$:
 - 14.6.1.5.1.1 if BIT_h^{NCA} includes one or more resource in a narrow constrained area, n, each resource $b \in BCT_h^{NCA}$ for the

- narrow constrained area, n, shall have the parameters in $PARAME_{h,b}$ replaced with its reference level values; and
- 14.6.1.5.1.2 if BIT_h^{DCA} includes one or more resources in a dynamic constrained area, d, each resource $b \in BCT_h^{DCA}$ for dynamic constrained area, d, shall have the parameters in PARAME_{h h} replaced with its reference level values.
- 14.6.1.6 If a non-quick-start resource in a narrow constrained area or a dynamic constrained area has failed a Price Impact Test, each non-quick start resource in the narrow constrained area or dynamic constrained area that also failed the corresponding Conduct Test shall have its commitment cost parameters replaced with its applicable reference level value for that hour. For any hours prior, if a non-quick-start resource in that narrow constrained area or dynamic constrained area has a commitment cost parameter that failed the Conduct Test, that commitment cost parameter shall be replaced with the resource's applicable reference level value in those hours. This is expressed as:
 - 14.6.1.6.1 For all hours up to the hour in which a resource failed the Price Impact Test for a narrow constrained area, for all $b \in BCT_h^{NCA}$, if $PARAME_{h,b}$ contains any of the commitment cost parameters SUOffer, SNLOffer, or EnergyToMLP_k, replace these parameters with reference level values.
 - 14.6.1.6.2 For all hours up to the hour in which a resource failed the Price Impact Test for a dynamic constrained area, for all $b \in BCT_h^{DCA}$, if $PARAME_{h,b}$ contains any of the commitment cost parameters SUOffer, SNLOffer, or EnergyToMLP_k, replace these parameters with reference level values.
- 14.6.1.7 If a *resource* fails the local market power for *operating reserve* Price Impact Test, all *resources* in the same *operating reserve* region with a non-zero *operating reserve* minimum requirement that failed the corresponding Conduct Test for at least one parameter shall have the parameter that failed the Conduct Test replaced with the *resource's* applicable *reference level value* for that hour. This is expressed as:
 - 14.6.1.7.1 For each hour $h \in \{1, ..., 24\}$, if BIT_h^{ORL} includes one or more resources in operating reserve region, r, all resources, $b \in BIT_h^{ORL}$ for operating reserve region, r, shall have the parameters in $PARAMOR_{h,b}$ replaced with reference level values.

- 14.6.1.8 If a non-quick start resource fails the local market power for operating reserve Price Impact Test in any hour, the commitment cost parameters for all non-quick start resources in the same operating reserve region with a non-zero operating reserve minimum requirement that failed the corresponding Conduct Test shall be replaced with the resource's applicable reference level value for that hour. For any hours prior, any commitment cost parameters of non-quick start resources that failed the Conduct Test shall be replaced with the resource's applicable reference level value in those hours. This is expressed as:
 - 14.6.1.8.1 For all hours up to the hour in which a *resource* failed the Price Impact Test for r, for all $b \in BCT_h^{ORL}$, if $PARAME_{h,b}$ contains any of the *commitment cost parameters SUOffer*, *SNLOffer*, or *EnergyToMLP_k*, replace these parameters with *reference level values*.

14.7 Outputs

- 14.7.1 The *day-ahead market calculation engine* shall prepare the following outputs for each hour $h \in \{1, ..., 24\}$:
 - 14.7.1.1 The set of *resources* that failed the Price Impact Test, by condition, in accordance to sections 14.4 and 14.5;
 - 14.7.1.2 The *locational marginal prices* for *energy* and *operating reserve* that failed the Price Impact Test for each *resource* at bus b in accordince to sections 14.4 and 14.5; and
 - 14.7.1.3 A revised set of *offer* data for *resources* that failed the Price Impact Test, replacing *offer* data that failed the Conduct Test with the applicable *reference level values*, in accordance with section 14.6.
- 14.7.2 The *day-ahead market calculation engine* shall not replace *financial dispatch data* parameters for a resource with that resource's applicable reference level value if the *dispatch data* is less than the reference level value.

15 Mitigated Scheduling

15.1 Purpose

- 15.1.1 The *day-ahead market calculation engine* shall perform the Mitigated Scheduling algorithm if at least one *resource* failed the Price Impact Test in section 14.
- 15.1.2 The Mitigated Scheduling algorithm shall perform a *security*-constrained unit commitment and economic *dispatch* to maximize gains from trade using *dispatch*

Page 117 of 169 Public IMO_FORM_1087v13.00

data submitted by registered market participants, including resource reference level values subject to section 15.2.2, to meet the IESO's average province-wide non-dispatchable demand forecast and IESO-specified operating reserve requirements for each hour of the next dispatch day.

15.2 Information, Sets, Indices and Parameters

- Information, sets, indices and parameters used by the Mitigated Scheduling algorithm are described in section 3 and 4. In addition, the Mitigated Scheduling algorithm shall use the list of *resources* that failed the Price Impact Test and a revised set of *financial dispatch data parameters* for those *resources*.
- 15.2.2 For *resources* identified in section 14.7.1, the Mitigated Scheduling algorithm shall use *reference level value* for any *financial dispatch data parameters* that failed the Conduct Test.

15.3 Variables, Objective Function and Constraints

- 15.3.1 The *day-ahead market calculation engine* shall solve for the variables set out in section 8.3.1.
- 15.3.2 The objective function for the Mitigated Scheduling algorithm shall be the same as the objective function in section 8.3.2, subject to the constraints in sections 8.4 through 8.7. The sensitivities and limits used in section 8.7.3 shall be replaced with those provided by the most recent *security* assessment function iteration in the Mitigated Scheduling algorithm.

15.4 Outputs

15.4.1 Outputs of the Mitigated Scheduling algorithm include *resource* schedules and commitments.

16 Mitigated Pricing

16.1 Purpose

- 16.1.1 The *day-ahead market calculation engine* shall perform the Mitigated Pricing algorithm if the *day-ahead market calculation engine* performs the Mitigated Scheduling algorithm.
- 16.1.2 The Mitigated Pricing algorithm shall perform a *security*-constrained economic *dispatch* to maximize gains from trade using *dispatch data* submitted by *registered market participants, resource reference level value* subject to section 16.2.2, and *resource* schedules and commitments produced by the Mitigated Scheduling

algorithm, to meet the *IESO*'s average province-wide non-dispatchable demand forecast and *IESO*-specified operating reserve requirements for each hour of the next dispatch day.

16.2 Information, Sets, Indices and Parameters

- 16.2.1 Information, sets, indices and parameters used by the Mitigated Pricing algorithm are described in sections 3 and 4. In addition, the following *resource* schedules and commitments from the Mitigated Scheduling algorithm shall be used by the Mitigated Pricing algorithm:
 - 16.2.1.1 $SDG_{h,b,k}^{MS}$ designates the amount of *energy* that a *dispatchable generation* resource is scheduled to provide above $MinQDG_b$ at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{E}$;
 - 16.2.1.2 $ODG_{h,b}^{MS}$ designates whether a dispatchable generation resource at bus $b \in B^{DG}$ was scheduled at or above its minimum loading point in hour $h \in \{1, ..., 24\}$;
 - 16.2.1.3 $S10SDG_{h,b,k}^{MS}$ designates the amount of synchronized *ten-minute operating* reserve that a *dispatchable generation resource* is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10S}$;
 - 16.2.1.4 $S10NDG_{h,b,k}^{MS}$ designates the amount of non-synchronized *ten-minute* operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10N}$;
 - 16.2.1.5 $S30RDG_{h,b,k}^{MS}$ designates the amount of thirty-minute operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{30R}$; and
 - 16.2.1.6 $OHO_{h,b}^{MS}$ designates whether a *dispatchable* hydroelectric *generation* resource at bus $b \in B^{HE}$ has been scheduled at or above $MinHO_{h,b}$ in hour $h \in \{1, ..., 24\}$.
- 16.2.2 For each *resource* identified in section 14.7.1, the Mitigated Pricing algorithm shall use such *resource* 's reference level value for any financial dispatch data parameters that failed the Conduct Test.

16.3 Variables and Objective Function

- 16.3.1 The *day-ahead market calculation engine* shall solve for the variables listed in section 9.3.1.
- 16.3.2 The objective function for the Mitigated Pricing algorithm shall be the same as the objective function in section 9.3.2, subject to section 16.4.

16.4 Constraints

- 16.4.1 The constraints that apply in the Mitigated Pricing algorithm shall be the same as the constraints in sections 9.4 through 9.8, with the following exceptions:
 - 16.4.1.1 The marginal loss factors used in the *energy* balance constraint in section 9.7.1 shall be fixed to the marginal loss factors used in the last iteration of the optimization function in the Mitigated Scheduling algorithm.
 - 16.4.1.2 The sensitivities and limits used in section 9.7.3 shall be replaced with those provided by the most recent *security* assessment function iteration in the Mitigated Pricing algorithm.
 - 16.4.1.3 For the constraints in section 9.8, the outputs from the As-Offered Scheduling algorithm shall be replaced with the outputs from the Mitigated Scheduling algorithm as follows:
 - 16.4.1.3.1 $SDG_{h,b,k}^{AOS}$ shall be replaced by $SDG_{h,b,k}^{MS}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{E};$
 - 16.4.1.3.2 $ODG_{h,b}^{AOS}$ shall be replaced by $ODG_{h,b}^{MS}$ for all $h \in \{1, ..., 24\}, b \in B^{DG}$;
 - 16.4.1.3.3 $S10SDG_{h,b,k}^{AOS}$ shall be replaced by $S10SDG_{h,b,k}^{MS}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{10S}$;
 - 16.4.1.3.4 $S10NDG_{h,b,k}^{AOS}$ shall be replaced by $S10NDG_{h,b,k}^{MS}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{10N};$
 - 16.4.1.3.5 $S30RDG_{h,b,k}^{AOS}$ shall be replaced by $S30RDG_{h,b,k}^{MS}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{30R}$; and
 - 16.4.1.3.6 $OHO_{h,b}^{AOS}$ shall be replaced by $OHO_{h,b}^{MS}$ for all $h \in \{1, ..., 24\}, b \in B^{HE}$.

16.5 Outputs

- 16.5.1 Outputs of the Mitigated Pricing algorithm include the following:
 - 16.5.1.1 Shadow prices; and
 - 16.5.1.2 Locational marginal prices and their components.

17 Pass 2: Reliability Scheduling and Commitment

17.1 Purpose

17.1.1 Pass 2 shall use *market participant* and *IESO* inputs along with *resource* and system constraints to determine a set of *resource* schedules and commitments. Pass 2 shall consist of the Reliability Scheduling algorithm described in section 18.

18 Reliabilty Scheduling

18.1 Purpose

18.1.1 The Reliability Scheduling algorithm shall use *dispatch data* submitted by *registered market participants* and perform a *security*-constrained unit commitment and economic *dispatch* to meet the *IESO*'s peak province-wide non-*dispatchable demand* forecast and *IESO*-specified *operating reserve* requirements for each hour of the next day to minimize the cost of additional commitments.

18.2 Information, Sets, Indices and Parameters

- 18.2.1 Information sets, indices and parameters used by the Reliability Scheduling algorithm are described in sections 3 and 4. The Reliability Scheduling algorithm shall also use the following:
 - 18.2.1.1 *resource* schedules, commitments, and *locational marginal prices* from Pass 1, where:
 - 18.2.1.1.1 $SXL_{h,d,j}^1$ designates the amount of *energy* that a *boundary entity resource* is scheduled to export at *intertie zone* bus $d \in DX$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,d}^E$;

- 18.2.1.1.2 $SDG_{h,b,k}^1$ designates the amount of *energy* that a *dispatchable generation resource* is scheduled to provide above $MinQDG_b$ at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^E$;
- 18.2.1.1.3 $ODG_{h,b}^1$ designates whether a dispatchable generation resource at bus $b \in B^{DG}$ was scheduled at or above its minimum loading point in hour $h \in \{1, ..., 24\}$;
- 18.2.1.1.4 $S10SDG_{h,b,k}^1$ designates the amount of synchronized tenminute operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10S}$;
- 18.2.1.1.5 $S10NDG_{h,b,k}^1$ designates the amount of non-synchronized ten-minute operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10N}$;
- 18.2.1.1.6 $S30RDG_{h,b,k}^1$ designates the amount of thirty-minute operating reserve that a qualified dispatchable generation resource is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{30R}$;
- 18.2.1.1.7 $SIG_{h,d,k}^1$ designates the amount of *energy* that a *boundary entity resource* is scheduled to import at *intertie zone* bus $d \in DI$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,d}^E$ and
- 18.2.1.1.8 $LMP_{h,b}^1$ designates the *locational marginal price* in hour $h \in \{1, ..., 24\}$ at bus $b \in B^{ELR} \cup B^{HE}$; and
- 18.2.1.2 the buses identifying either single *energy limited resources* or multiple *dispatchable* hydroelectric *generation resources* with a registered *forebay*, and the subset of *resources* with a binding *maximum daily energy limit* constraint from Pass 1:
 - 18.2.1.2.1 $B^{LIM} = B^{ELR} \cup \{B_s^{HE} \text{ for all } s \in SHE\}$ designates the set of buses identifying either *energy limited resources* or *dispatchable* hydroelectric *generation resources* sharing a *maximum daily energy limit*; and

18.2.1.2.2 $B^{BND} \subseteq B^{LIM}$ designates the subset of buses identifying either energy limited resources, or dispatchable hydroelectric generation resources sharing a maximum daily energy limit, with a binding maximum daily energy limit constraint from Pass 1, where:

a maximum daily energy limit shall be considered binding if the criteria in sections 9.8.2 and 9.8.3.6 are met using $ODG_{h,b}^1$, $SDG_{h,b,k}^1$, $S10SDG_{h,b,k}^1$, $S10NDG_{h,b,k}^1$ and $S30RDG_{h,b,k}^1$.

- 18.2.2 The Reliability Scheduling algorithm shall use *reference level value* for any *financial dispatch data parameters* that failed the Conduct Test associated with *resources* identified in section 14.7.
- 18.2.3 Dispatchable loads, non-dispatchable generation resources, and the energy offered above minimum loading point for dispatchable generation resources shall be evaluated in the Reliability Scheduling algorithm as follows:
 - 18.2.3.1 *PRucDL*_{h,b,j} designates the *energy* price for incremental *energy* consumption in hour $h \in \{1, ..., 24\}$ at *dispatchable load* bus $b \in B^{DL}$ in association with *bid* lamination $j \in f_{h,b}^E$, where:

$$PRucDL_{h,h,i} = min(n,PDL_{h,h,i});$$

18.2.3.2 $PRuc10SDL_{h,b,j}$ designates the price of being scheduled to provide synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ at *dispatchable load* bus $b \in B^{DL}$ in association with *offer* lamination $j \in J_{h,b}^{10S}$, where:

$$PRuc10SDL_{h,b,j} = min(n,P10SDL_{h,b,j});$$

18.2.3.3 $PRuc10NDL_{h,b,j}$ designates the price of being scheduled to provide non-synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ at dispatchable load bus $b \in B^{DL}$ in association with offer lamination $j \in J_{h,b}^{10N}$, where:

$$PRuc10NDL_{h,b,j} = min(n,P10NDL_{h,b,j});$$

18.2.3.4 *PRuc*30 *RDL*_{h,b,j} designates the price of being scheduled to provide *thirty-minute operating reserve* in hour $h \in \{1, ..., 24\}$ at *dispatchable load* bus $b \in B^{DL}$ in association with *offer* lamination $j \in \beta_{h,h}^{0,R}$, where:

$$PRuc30RDL_{h,b,j} = min(n, P30RDL_{h,b,j});$$

18.2.3.5 $PRucNDG_{h,b,k}$ designates the *energy* price for incremental generation in hour $h \in \{1, ..., 24\}$ at *non-dispatchable generation resource* bus $b \in B^{NDG}$ in association with *offer* lamination $k \in K_{h,b}^E$, where:

$$PRucNDG_{h,h,k} = min(n, PNDG_{h,h,k});$$

18.2.3.6 $PRucDG_{h,b,k}$ designates the *energy* price for incremental generation in hour $h \in \{1, ..., 24\}$ at *dispatchable generation resource* bus $b \in B^{DG}$ in association with *offer* lamination $k \in K_{h,b}^E$, where:

$$PRucDG_{h,b,k} = min(n, PDG_{h,b,k});$$

18.2.3.7 $PRuc10SDG_{h,b,k}$ designates the price of being scheduled to provide synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ at *dispatchable generation resource* bus $b \in B^{DG}$ in association with *offer* lamination $k \in K_{h,b}^{10S}$, where:

$$PRuc10SDG_{h,b,k} = min(n, P10SDG_{h,b,k});$$

18.2.3.8 $PRuc10NDG_{h,b,k}$ designates the price of being scheduled to provide non-synchronized *ten-minute operating reserve* in hour $h \in \{1, ..., 24\}$ at dispatchable generation resource bus $b \in B^{DG}$ in association with offer lamination $k \in K_{h,b}^{10N}$, where:

$$PRuc10NDG_{h,b,k} = min(n, P10NDG_{h,b,k});$$

18.2.3.9 $PRuc30RDG_{h,b,k}$ designates the price of being scheduled to provide *thirty-minute operating reserve* in hour $h \in \{1, ..., 24\}$ at *dispatchable* generation bus $b \in B^{DG}$ in association with *offer* lamination $k \in K_{h,b}^{30R}$, where:

$$PRuc30RDG_{h,b,k} = min(n, P30RDG_{h,b,k});$$

where:

$$n = \$0.10/MWh;$$

- 18.2.4 For the set of *resources* identified in the buses in section 18.2.1.2, incremental quantities of *energy* at or above *minimum loading point* shall be evaluated in the Reliability Scheduling algorithm as follows:
 - 18.2.4.1 $Q1DG_{h,b,k}$ designates an incremental quantity of *energy* that a *resource* may be scheduled to provide in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^E$ and corresponding to the Pass 1 scheduled portion of the lamination, where:

$$Q1DG_{h,b,k} = SDG_{h,b,k}^1;$$

18.2.4.2 $P1DG_{h,b,k}$ designates the price for the incremental quantity of *energy* that a resource may be scheduled to provide in hour $h \in \{1,...,24\}$ in association with offer lamination $k \in K_{h,b}^E$ and corresponding to the Pass 1 scheduled portion of the lamination, where:

$$P1DG_{h,b,k} = min \left(PDG_{h,b,k}, -LMP_{h,b}^{1}\right);$$

18.2.4.3 $Q2DG_{h,b,k}$ designates an incremental quantity of *energy* that a *resource* may be scheduled to provide in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^E$ and corresponding to the Pass 1 unscheduled portion of the lamination, where:

$$Q2DG_{h,b,k} = QDG_{h,b,k} - SDG_{h,b,k}^{1}$$
; and

18.2.4.4 $P2DG_{h,b,k}$ designates the price for the incremental quantity of *energy* that a *resource* may be scheduled to provide in hour $h \in \{1, ..., 24\}$ in association with *offer* lamination $k \in K_{h,b}^E$ and corresponding to the Pass 1 unscheduled portion of the lamination, where:

$$P2DG_{h,b,k} = \begin{cases} max(n, PDG_{h,b,k} - LMP_{h,b}^{1}) & \text{if } b \in B^{BND} \\ min(n, PDG_{h,b,k}) & \text{otherwise} \end{cases}.$$

18.3 Variable and Objective Function

- 18.3.1 The *day-ahead market calculation engine* shall solve for the variables listed in section 8.3.1.
- 18.3.2 The objective function for the Reliability Scheduling algorithm shall be the same as the objective function in section 8.3.2, with the following exceptions:
 - 18.3.2.1 The day-ahead market calculation engine shall remove the variables for price responsive loads ($SPRL_{h,b,j}$), virtual transaction bids ($PVB_{h,v,j}$), and virtual transaction offers ($PVO_{h,v,k}$, $QVO_{h,v,k}$) from the objective function;
 - 18.3.2.2 The *day-ahead market calculation engine* shall add the following variables to the objective function:
 - 18.3.2.2.1 $S1DG_{h,b,k}$ designates the amount of *energy* that a dispatchable generation resource is scheduled to provide at bus $b \in B^{LIM}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^E$ corresponding to the Pass 1 scheduled portion of the lamination; and

- 18.3.2.2.2 $S2DG_{h,b,k}$ designates the amount of *energy* that a *dispatchable generation resource* is scheduled to provide at bus $b \in B^{LIM}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^E$ corresponding to the Pass 1 unscheduled portion of the lamination;
- 18.3.2.3 The objective function coefficients for *dispatchable loads*, *non-dispatchable generation resources* and *dispatchable generation resources* shall be modified to reflect the price of incremental *energy* from such *resources* as specified in section 18.2.3; and
- 18.3.2.4 The objective function coefficients for single *energy limited resources* and multiple *dispatchable* hydroelectric *generation resources* with a registered *forebay* shall be modified to reflect the pricing of the Pass 1 scheduled and unscheduled portions as specified in section 18.2.4.
- 18.3.3 The objective function for the Reliability Scheduling algorithm shall minimize the cost of additional commitments by maximizing the following expression:

$$\sum_{h \,=\, 1,\dots,24} \binom{ObjDL_h - ObjHDR_h + ObjXL_h - ObjNDG_h}{-ObjDG_h - ObjIG_h - TB_h - ViolCost_h}$$

where:

$$ObjDL_{h}$$

$$= \sum_{b \in B^{DL}} \left(\sum_{j \in J_{h,b}^{E}} SDL_{h,b,j} \cdot PRucDL_{h,b,j} - \sum_{j \in J_{h,b}^{10S}} S10SDL_{h,b,j} \cdot PRuc10SDL_{h,b,j} - \sum_{j \in J_{h,b}^{10S}} S10NDL_{h,b,j} \cdot PRuc10NDL_{h,b,j} - \sum_{j \in J_{h,b}^{30R}} S30RDL_{h,b,j} \cdot PRuc30RDL_{h,b,j} \right)$$

$$ObjHDR_{h} = \sum_{b \in B^{HDR}} \left(\sum_{j \in J_{h,b}^{E}} SHDR_{h,b,j} \cdot PHDR_{h,b,j} \right)$$

$$ObjXL_{h} = \sum_{d \in DX} \left(\sum_{j \in J_{h,d}^{E}} SXL_{h,d,j} \cdot PXL_{h,d,j} - \sum_{j \in J_{h,d}^{30R}} S10NXL_{h,d,j} \cdot P10NXL_{h,d,j} \right)$$

$$ObjNDG_{h} = \sum_{b \in B^{NDG}} \left(\sum_{k \in R_{h,b}^{E}} SNDG_{h,b,k} \cdot PRucNDG_{h,b,k} \right)$$

$$\begin{aligned} ObjDG_{h} &= \sum_{b \in B^{DG}, \ b \notin B^{LIM}} \left(\sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} \cdot PRucDG_{h,b,k} \right) \\ &+ \sum_{b \in B^{LIM}} \left(\sum_{k \in K_{h,b}^{E}} \left(S1DG_{h,b,k} \cdot P1DG_{h,b,k} + S2DG_{h,b,k} \cdot P2DG_{h,b,k} \right) \right) \\ &+ \sum_{b \in B^{DG}} \left(\sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \cdot PRuc10NDG_{h,b,k} \cdot PRuc10SDG_{h,b,k} + \right. \\ &+ \sum_{b \in B^{DG}} \left(\sum_{k \in K_{h,b}^{10N}} S10NDG_{h,b,k} \cdot PRuc10NDG_{h,b,k} + \sum_{k \in K_{h,b}^{30R}} S30RDG_{h,b,k} \cdot PRuc30RDG_{h,b,k} \right) \\ &+ \sum_{b \in B^{NQS}} \left(ODG_{h,b} \cdot MGODG_{h,b} + IDG_{h,b} \cdot SUDG_{h,b} \right) \\ &+ \sum_{b \in B^{NQS}} S10NIG_{h,d,k} \cdot P10NIG_{h,d,k} + \sum_{k \in K_{h,d}^{30R}} S10NIG_{h,d,k} \cdot P10NIG_{h,d,k} \right) \\ &+ \sum_{k \in K_{h,d}^{30R}} S30RIG_{h,d,k} \cdot P30RIG_{h,d,k} \end{aligned}$$

18.3.3.1 The tie-breaking (TB_h) and the violation cost ($ViolCost_h$) terms used shall be the ones defined in sections 8.3.1 and 8.3.2.

18.4 Constraints

18.4.1 The Reliability Scheduling algorithm optimization shall apply the constraints described in sections 18.5 through 18.7 and 18.8.

18.5 Dispatch Data Constraints Applying to Individual Hours

- 18.5.1 Scheduling Variable Bounds and Commitment Status Variables
 - 18.5.1.1 The constraints shall be the same as in section 8.5.1 with the following exceptions:
 - 18.5.1.1.1 the constraints applying to *price responsive loads* in section 8.5.1.6 shall be removed; and
 - 18.5.1.1.2 the constraints applying to *virtual transaction bids* and *offers* in section 8.5.1.6 shall be removed.
- 18.5.2 Resource Minimums and Maximums
 - 18.5.2.1 The constraints in section 8.5.2 shall apply for *dispatchable loads*, *non-dispatchable generation resources* and inadvertent payback transactions.

18.5.2.2 The constraints in section 8.5.2 shall apply for *dispatchable generation* resources, except the alternative forecast $(AFG_{h,b})$ is replaced with the *IESO*'s centralized forecast $(FG_{h,b})$. That is:

$$AdjMaxDG_{h,b} = \begin{cases} min(MaxDG_{h,b}, FG_{h,b}) & \text{if } b \in B^{VG} \\ MaxDG_{h,b} & \text{otherwise} \end{cases}$$
 and
$$AdjMinDG_{h,b} = min(MinDG_{h,b}, AdjMaxDG_{h,b})$$
 Then, for all hours $h \in \{1, \dots, 24\}$ and all buses $b \in B^{DG}$:

$$\begin{aligned} AdjMinDG_{h,b} &\leq MinQDG_b \cdot ODG_{h,b} + \sum_{k \in K_{h,b}^E} SDG_{h,b,k} \\ &\leq AdjMaxDG_{h,b} \end{aligned}$$

- 18.5.3 Operating Reserve Requirements
 - 18.5.3.1 The constraints in section 8.5.4 shall apply for *operating reserve* requirements.
- 18.5.4 Pseudo-Units
 - 18.5.4.1 The constraints in section 8.5.5 shall apply for *pseudo-units*.
- 18.5.5 Dispatchable Hydroelectric Generation Resources
 - 18.5.5.1 The constraints in section 8.5.6 shall apply for *dispatchable* hydroelectric *generation resources*.
- 18.5.6 <u>Linked</u> Wheeling Through Transactions
 - 18.5.6.1 The constraints in section 8.5.7 shall apply for <u>linked wheeling through</u> <u>transactions</u>-wheeling through transactions.

18.6 Dispatch Data Inter-Hour/Multi-Hour Constraints

- 18.6.1 Energy Ramping
 - 18.6.1.1 The constraints in section 8.6.1 shall apply for *energy* ramping.
- 18.6.2 Operating Reserve Ramping
 - 18.6.2.1 The constraints in section 8.6.2 shall apply for *operating reserve* ramping.

- 18.6.3 Non-Quick-start Resources
 - 18.6.3.1 The constraints in section 8.6.3 shall apply for *non-quick start resources*.
- 18.6.4 Energy Limited Resources
 - 18.6.4.1 The constraints in section 8.6.4 shall apply for *energy limited resources*.
- 18.6.5 Dispatchable Hydroelectric Generation Resources
 - 18.6.5.1 The constraints in section 8.6.5 shall apply for *dispatchable* hydroelectric *generation resources*.

18.7 Constraints for Reliability Requirements

- 18.7.1 Energy Balance
 - 18.7.1.1 The constraint in section 8.7.1 shall apply in the Reliability Scheduling algorithm, with the following exceptions:
 - 18.7.1.1.1 *price responsive loads* shall be removed from the total amount of scheduled *energy* withdrawals, *With*_{h,b}, in section 8.7.1.1;
 - 18.7.1.1.2 the net withdrawal for *virtual transaction zones*, $VWith_{h,m}$, in sections 8.7.1.2 and 8.7.1.6 shall be removed; and
 - 18.7.1.1.3 the Reliability Scheduling algorithm shall use the *IESO's* peak province-wide non-*dispatchable demand* forecast (PFL_h) , in place of the *IESO's* average province-wide non-*dispatchable* demand forecast (AFL_h) .
 - 18.7.1.2 The total amount of *energy* withdrawals scheduled at load bus $b \in B$ in hour $h \in \{1, ..., 24\}$, *With*_{h,b}, shall be:

$$With_{h,b}$$

$$= \begin{cases} \sum_{j \in J_{h,b}^{E}} SDL_{h,b,j} & \text{if } b \in B^{DL} \\ \sum_{j \in J_{h,b}^{E}} (QHDR_{h,b,j} - SHDR_{h,b,j}) & \text{if } b \in B^{HDR} \end{cases}$$

18.7.1.3 The total amount of *energy* withdrawals scheduled at *intertie zone* bus $d \in DX$ in hour $h \in \{1, ..., 24\}$, $With_{h,d}$, shall be:

$$With_{h,d} = \sum_{j \in J_{h,d}^E} SXL_{h,d,j}$$

18.7.1.4 The total amount of *energy* injections scheduled at internal bus $b \in B$ in hour $h \in \{1, ..., 24\}$, $Inj_{h,b}$, shall be:

$$Inj_{h,b} = OfferInj_{h,b} + RampInj_{h,b}$$

where:

$$OfferInj_{h,b} \\ = \begin{cases} \sum_{k \in K_{h,b}^{E}} SNDG_{h,b,k} & \text{if } b \in B^{NDG} \\ ODG_{h,b} \cdot MinQDG_{b} + \sum_{k \in K_{h,b}^{E}} SDG_{h,b,k} & \text{if } b \in B^{DG} \end{cases}$$

and

$$\begin{aligned} &RampInj_{h,b} \\ &= \begin{cases} &\sum_{w=1..min(RampHrs_b,24-h)} &RampE_{b,w} \cdot IDG_{h+w,b} & if \ b \in B^{NQS} \\ &0 & otherwise \end{aligned}$$

18.7.1.5 The total amount of *energy* injections scheduled at *intertie zone* bus $d \in DI$ in hour $h \in \{1, ..., 24\}$, $Inj_{h,d}$, shall be:

$$Inj_{h,d} = \sum_{k \in K_{h,d}^E} SIG_{h,d,k}.$$

18.7.1.6 Energy injections and withdrawals at each bus shall be multiplied by one plus the marginal loss factor from the security assessment function to reflect the losses or reduction in losses that result when injections or withdrawals occur at locations other than the reference bus. These loss-adjusted energy injections and withdrawals must then be equal to each other, after taking into account the adjustment for any discrepancy between total and marginal losses. Load or generation reduction associated with the demand constraint violation shall be subtracted from the total load or generation to allow the day-ahead market calculation engine to produce a solution. For hour $h \in \{1, ..., 24\}$:

$$\begin{split} PFL_h + \sum_{b \in B^{DL} \cup B^{HDR}} & (1 + MglLoss_{h,b}) \cdot With_{h,b} \\ & + \sum_{d \in DX} (1 + MglLoss_{h,d}) \cdot With_{h,d} \\ & - \sum_{i=1..N_{LdViol_h}} & SLdViol_{h,i} \\ & = \sum_{b \in B^{NDG} \cup B^{DG}} & \left(1 + MglLoss_{h,b}\right) \cdot Inj_{h,b} \\ & + \sum_{d \in DI} & \left(1 + MglLoss_{h,d}\right) \cdot Inj_{h,d} \\ & - \sum_{i=1..N_{GenViol_h}} & SGenViol_{h,i} + LossAdj_h. \end{split}$$

- 18.7.2 Operating Reserve Requirements
 - 18.7.2.1 The constraints in section 8.7.2 shall apply for *operating reserve*.
- 18.7.3 IESO Internal Transmission Limits
 - 18.7.3.1 The constraints in section 8.7.3 shall apply for *IESO* internal transmission limits. The sensitivities and limits applied shall be provided by the most recent *security* assessment function iteration of the Reliability Scheduling algorithm, with the following exceptions:
 - 18.7.3.2 The terms for *price responsive loads* in sections 8.7.3.3 and 8.7.3.4 shall be removed; and
 - 18.7.3.3 The terms for *bids* and *offers* for *virtual transactions* in sections 8.7.3.3 and 8.7.3.4 shall be removed.
- 18.7.4 Intertie Limits
 - 18.7.4.1 The constraints in section 8.7.4 shall apply for *intertie* limits.
- 18.7.5 Penalty Price Variable Bounds
 - 18.7.5.1 The constraints in section 8.7.5 shall apply for penalty price variable bounds.

18.8 Constraints to Respect Pass 1 Decisions

18.8.1 The Reliability Scheduling algorithm shall not schedule *energy* import schedules for *boundary entity resources* below those import schedules determined in Pass 1. For all

hours $h \in \{1, ..., 24\}$ and *intertie zone* buses $d \in DI$ that are not part of a <u>linked</u> wheeling through transaction wheeling through transaction:

$$\sum_{k \in K_{h,d}^E} SIG_{h,d,k} \ge \sum_{k \in K_{h,d}^E} SIG_{h,d,k}^1$$

18.8.2 The Reliability Scheduling algorithm shall not schedule *energy* export schedules for *boundary entity resources* above those export schedules determined in Pass 1. For all hours $h \in \{1, ..., 24\}$ and *intertie zone* buses $d \in DX$ that are not part of a <u>linked</u> wheeling through transaction through transaction:

$$\sum_{j \in J_{h,d}^E} SXL_{h,d,j} \leq \sum_{j \in J_{h,d}^E} SXL_{h,d,j}^1$$

18.8.3 The Reliability Scheduling algorithm shall not de-commit *dispatchable generation* resources committed in Pass 1. For all hours $h \in \{1, ..., 24\}$ and buses $b \in B^{DG}$:

$$ODG_{h,h} \geq ODG_{h,h}^1$$

For single *energy limited resources* and multiple *dispatchable* hydroelectric *generation resources* with a registered *forebay*, the Reliability Scheduling algorithm shall ensure the schedule for each *offer* lamination is equal to the schedules corresponding to the Pass 1 scheduled and unscheduled portions. For all buses $b \in B^{LIM}$, hours $h \in \{1, ..., 24\}$ and *offer* laminations $k \in K_{h,b}^E$:

$$SDG_{h,b,k} = S1DG_{h,b,k} + S2DG_{h,b,k}$$

18.8.5 The *generation resource* schedules for the Pass 1 scheduled and unscheduled portions of the lamination shall respect the incremental quantity of *energy* beyond the *minimum loading point* that may be scheduled. For all buses $b \in B^{LIM}$, hours $h \in \{1, ..., 24\}$ and *offer* laminations $k \in K_{h,b}^E$:

$$0 \leq S1DG_{h,b,k} \leq Q1DG_{h,b,k}$$

and

$$0 \leq S2DG_{h,b,k} \leq Q2DG_{h,b,k}$$

18.9 Outputs

18.9.1 Outputs of the Reliability Scheduling algorithm shall include *resource* schedules and commitments.

19 Pass 3: DAM Scheduling and Pricing

19.1 Purpose

19.1.1 Pass 3 shall use *market participant* and *IESO* inputs along with *resource* and system constraints to determine a set of *resource* schedules, commitments, and shadow prices, as well as a set of schedules and *locational marginal prices* that shall be used for *settlement*. Pass 3 consists of the DAM Scheduling algorithm described in section 20 and the DAM Pricing algorithm described in section 21.

20 DAM Scheduling

20.1 Purpose

20.1.1 The DAM Scheduling algorithm shall perform a security-constrained economic dispatch to maximize gains from trade using dispatch data submitted by registered market participants, reference level values for resources subject to section 20.2.2, and resource schedules and commitments from the Reliability Scheduling algorithm, to meet the IESO's average province-wide non-dispatchable demand forecast and IESO-specified operating reserve requirements for each hour of the next dispatch day

20.2 Information, Sets, Indices and Parameters

- 20.2.1 Information, sets, indices and parameters for the DAM Scheduling algorithm are described in sections 3 and 4. In addition, the following *resource* schedules and commitments from Pass 2 shall be used by the DAM Scheduling algorithm:
 - 20.2.1.1 $SXL_{h,d,j}^2$, which designates the amount of *energy* that a *boundary entity* resource is scheduled to export at *intertie zone* bus $d \in DX$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,d}^E$;
 - 20.2.1.2 $ODG_{h,b}^2$, which designates whether the *dispatchable generation resource* at bus $b \in B^{DG}$ was scheduled at or above its *minimum loading point* in hour $h \in \{1, ..., 24\}$; and
 - 20.2.1.3 $SIG_{h,d,k}^2$, which designates the amount of *energy* that a *boundary entity* resource is scheduled to import at *intertie zone* bus $d \in DI$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,d}^E$.
- 20.2.2 The DAM Scheduling algorithm shall use *reference level value* for any *financial dispatch data parameters* that failed the Conduct Test associated with *resources* identified in section 14.7.

20.3 Variables and Objective Function

- The *day-ahead market calculation engine* shall solve for the variables set out in section 8.3.1.
- 20.3.2 The objective function for the DAM Scheduling algorithm shall be the same as the objective function in section 8.3.2, with the following exceptions:
 - 20.3.2.1 the variables for unit commitment decisions ($ODG_{h,b}$) shall be fixed within the optimization function; and
 - 20.3.2.2 the *start-up offer* ($SUDG_{h,b}$) and the *offer* price to operate at *minimum loading point* ($MGODG_{h,b}$) shall be removed from the objective function.
- 20.3.3 The optimization function in the DAM Scheduling algorithm shall be subject to the constraints described in section 20.4.

20.4 Constraints

20.4.1 The DAM Scheduling algorithm optimization function shall apply the constraints described in sections 20.5–20.8.

20.5 Dispatch Data Constraints Applying to Individual Hours

20.5.1 The constraints in section 8.5 shall apply in the DAM Scheduling algorithm.

20.6 Dispatch Data Inter-Hour/Multi-Hour Constraints

20.6.1 The constraints in section 8.6 shall apply in the DAM Scheduling algorithm, with the exception that the constraints for *non-quick start resources* in section 8.6.3 shall be removed.

20.7 Constraints to Ensure Schedules Do Not Violate *Reliability* Requirements

20.7.1 The constraints are the same as in section 8.7. The sensitivities and limits used in section 8.7.3 are those provided by the most recent *security* assessment function iteration of the DAM Scheduling algorithm.

20.8 Constraints to Respect Pass 2 Decisions

20.8.1 The DAM Scheduling algorithm shall not decrease import schedules from the values produced in Pass 2 and may schedule additional imports of *energy* in Pass 3. For all hours $h \in \{1, ..., 24\}$ and *intertie zone* buses $d \in DI$ that are not part of a <u>linked</u> wheeling through transaction through transaction:

$$\sum_{k \in K_{h,d}^E} SIG_{h,d,k} \ge \sum_{k \in K_{h,d}^E} SIG_{h,d,k}^2$$

20.8.2 The DAM Scheduling algorithm shall not increase export schedules in Pass 3 from the values produced in Pass 2. For all hours $h \in \{1, ..., 24\}$ and *intertie zone* buses $d \in DX$ that are not part of a <u>linked wheeling through transaction</u>;

$$\sum_{j \in J_{h,d}^E} SXL_{h,d,j} \le \sum_{j \in J_{h,d}^E} SXL_{h,d,j}^2$$

20.8.3 The DAM Scheduling algorithm shall not change commitments statuses in Pass 3 for *resources* as determined in Pass 2. For all hours $h \in \{1, ..., 24\}$ and buses $b \in B^{DG}$:

$$ODG_{h,b} = ODG_{h,b}^2$$

20.9 Outputs

20.9.1 Outputs for the DAM Scheduling algorithm shall include *resource* schedules and commitments.

21 DAM Pricing

21.1 Purpose

21.1.1 The DAM Pricing algorithm shall perform a *security*-constrained economic *dispatch* to maximize gains from trade using *dispatch data* submitted by *registered market* participants, reference level values for resources subject to section 21.2.2, and resource schedules and commitments produced by the DAM Scheduling algorithm, to meet the *IESO*'s average province-wide non-dispatchable demand forecast and *IESO*-specified operating reserve requirements for each hour of the next dispatch day.

21.2 Information, Sets, Indices and Parameters

- 21.2.1 Information, sets, indices and parameters for the DAM Pricing algorithm are described in sections 3 and 4. In addition, DAM Pricing algorithm shall use the following *resource* schedules and commitments from the DAM Scheduling algorithm in section 20:
 - 21.2.1.1 $SDG_{h,b,k}^3$, which designates the amount of *energy* that a *dispatchable* generation resource is scheduled to provide above $MinQDG_b$ at bus $b \in$

- $B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{E}$;
- 21.2.1.2 $ODG_{h,b}^3$, which designates whether the *dispatchable generation resource* at bus $b \in B^{DG}$ was scheduled at or above its *minimum loading point* in hour $h \in \{1, ..., 24\}$. Note that $ODG_{h,b}^3 = ODG_{h,b}^2$ for all hours $h \in \{1, ..., 24\}$ and buses $b \in B^{DG}$;
- 21.2.1.3 $S10SDG_{h,b,k}^3$, which designates the amount of synchronized *ten-minute* operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10S}$;
- 21.2.1.4 $S10NDG_{h,b,k}^3$, which designates the amount of non-synchronized tenminute operating reserve that a dispatchable generation resource is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{10N}$;
- 21.2.1.5 $S30RDG_{h,b,k}^3$, which designates the amount of *thirty-minute operating* reserve that a *dispatchable generation resource* is scheduled to provide at bus $b \in B^{ELR} \cup B^{HE}$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,b}^{30R}$; and
- 21.2.1.6 $OHO_{h,b}^3$, which designates whether the *dispatchable* hydroelectric generation resource at bus $b \in B^{HE}$ has been scheduled at or above $MinHO_{h,b}$ in hour $h \in \{1, ..., 24\}$.
- 21.2.2 The *resource* schedules from Pass 2:
 - 21.2.2.1 $SXL_{h,d,j}^2$, which designates the amount of *energy* that a *boundary entity* resource is scheduled to export at bus $d \in DX$ in hour $h \in \{1, ..., 24\}$ in association with lamination $j \in J_{h,d}^E$; and
 - 21.2.2.2 $SIG_{h,d,k}^2$, which designates the amount of *energy* that a *boundary entity* resource is scheduled to import at bus $d \in DI$ in hour $h \in \{1, ..., 24\}$ in association with lamination $k \in K_{h,d}^E$.
 - 21.2.2.3 The DAM Pricing algorithm shall use *reference level values* for any *financial dispatch data parameters* that failed the Conduct Test associated with *resources* identified in section 14.7.

21.3 Variables and Objective Function

21.3.1 The DAM Pricing algorithm shall solve for the variables listed in section 9.3.1.

21.3.2 The objective function for the DAM Pricing algorithm shall be the same as the objective function in section 9.3.2, subject to section 21.4.

21.4 Constraints

- 21.4.1 The constraints in sections 9.4 through 9.8 shall apply in the DAM Pricing algorithm, with the following exceptions:
 - 21.4.1.1 The marginal loss factors used in the *energy* balance constraint in section 9.7.1 shall be fixed to the marginal loss factors used in the last optimization function iteration of the DAM Scheduling alogorithm in section 20.
 - 21.4.1.2 The sensitivities and limits used in section 9.7.3 shall be provided by the most recent *security* assessment function iteration of the DAM Pricing algorithm.
 - 21.4.1.3 For the constraints in section 9.8, the outputs from the As-Offered Scheduling algorithm in section 8 shall be replaced with the outputs from the DAM Scheduling algorithm in section 20, as follows:
 - 21.4.1.3.1 $SDG_{h,b,k}^{AOS}$ shall be replaced by $SDG_{h,b,k}^{3}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{E}$;
 - 21.4.1.3.2 $ODG_{h,b}^{AOS}$ shall be replaced by $ODG_{h,b}^{3}$ for all $h \in \{1, ..., 24\}, b \in B^{DG}$;
 - 21.4.1.3.3 $S10SDG_{h,b,k}^{AOS}$ shall be replaced by $S10SDG_{h,b,k}^{3}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{10S}$;
 - 21.4.1.3.4 $S10NDG_{h,b,k}^{AOS}$ shall be replaced by $S10NDG_{h,b,k}^{3}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{10N}$;
 - 21.4.1.3.5 $S30RDG_{h,b,k}^{AOS}$ shall be replaced by $S30RDG_{h,b,k}^{3}$ for all $h \in \{1, ..., 24\}, b \in B^{ELR} \cup B^{HE}, k \in K_{h,b}^{30R}$; and
 - 21.4.1.3.6 $OHO_{h,b}^{AOS}$ shall be replaced by $OHO_{h,b}^{3}$ for all $h \in \{1, ..., 24\}, b \in B^{HE}$.
 - 21.4.1.4 The constraints imposed for *boundary entity resource* schedules in section 20.8 shall apply to *boundary entity resource* schedules in the DAM Pricing algorithm, with a tolerance Δ specified by the *IESO* and:

21.4.1.4.1 For all hours $h \in \{1, ..., 24\}$ and boundary entity resource import buses $d \in DI$ that are not part of a <u>linked wheeling through transaction</u> wheeling through transaction:

$$\sum_{k \in K_{h,d}^E} SIG_{h,d,k} \geq \sum_{k \in K_{h,d}^E} SIG_{h,d,k}^2 - \Delta$$

21.4.1.4.2 For all hours $h \in \{1, ..., 24\}$ and boundary entity resource export buses $d \in DX$ that are not part of a <u>linked wheeling through transaction</u> wheeling through transaction:

$$\sum_{j \in J_{h,d}^E} SXL_{h,d,j} \le \sum_{j \in J_{h,d}^E} SXL_{h,d,j}^2 + \Delta$$

21.5 Outputs

21.5.1 Outputs of the DAM Pricing algorithm include shadow prices and *locational* marginal prices for energy and operating reserve.

22 Pseudo-Unit Modelling

22.1 Pseudo-Unit Model Parameters

- 22.1.1 The *day-ahead market calculation engine* shall use the following registration and daily *dispatch data* to determine the underlying relationship between a *pseudo-unit* and the associated physical *resources* for a *combined cycle plant*combined cycle *facility* with *K* combustion turbines <u>resources</u> and one steam turbine <u>resource</u>:
 - 22.1.1.1 *CMCR*_k designates the registered *maximum continuous rating* of combustion turbine *resource* $k \in \{1, ..., K\}$ in MW;
 - 22.1.1.2 *CMLP_k* designates the *minimum loading point* of combustion turbine $resource \ k \in \{1, ..., K\}$ in MW;
 - 22.1.1.3 *SMCR* designates the registered *maximum continuous rating* of the steam turbine *resource* in MW;
 - 22.1.1.4 *SMLP* designates the *minimum loading point* of the steam turbine <u>resource</u> in MW for a 1x1 configuration;
 - 22.1.1.5 *SDF* designates the amount of duct firing capacity available on the steam turbine *resource* in MW;

- 22.1.1.6 $STPortion_k$ designates the percentage of the steam turbine <u>resource</u> capacity attributed to *pseudo-unit* $k \in \{1, ..., K\}$; and
- 22.1.1.7 $CSCM_k \in \{0,1\}$ designates whether *pseudo-unit* $k \in \{1,...,K\}$ is flagged to operate in single cycle mode for the day.
- The day-ahead market calculation engine shall calculate the following model parameters for each pseudo-unit $k \in \{1,...K\}$:
 - 22.1.2.1 $MMCR_k$ designates the maximum continuous rating of pseudo-unit k and is calculated as follows:

$$CMCR_k + SMCR \cdot STPortion_k \cdot (1 - CSCM_k)$$

22.1.2.2 $MMLP_k$ designates the *minimum loading point* of *pseudo-unit k* and is calculated as follows:

$$CMLP_k + SMLP \cdot (1 - CSCM_k)$$

22.1.2.3 MDF_k designates the duct firing capacity of *pseudo-unit k* and is calculated as follows:

$$SDF \cdot STPortion_k \cdot (1 - CSCM_k)$$

22.1.2.4 MDR_k designates the *dispatchable* capacity of *pseudo-unit k* and is calculated as follows:

$$MMCR_k - MMLP_k - MDF_k$$

- 22.1.3 The *day-ahead market calculation engine* shall define three operating regions of *pseudo-unit* $k \in \{1,..K\}$, as follows:
 - 22.1.3.1 The *minimum loading point* region shall be the capacity between 0 and $MMLP_k$;
 - 22.1.3.2 The *dispatchable* region shall be the capacity between $MMLP_k$ and $MMLP_k + MDR_k$; and
 - 22.1.3.3 The duct firing region shall be the capacity between $MMLP_k + MDR_k$ and $MMCR_k$.
- 22.1.4 The *day-ahead market calculation engine* shall calculate the associated combustion turbine <u>resource</u> and steam turbine <u>resource</u> shares for the three operating regions of pseudo-unit $k \in \{1,..K\}$, as follows:
 - 22.1.4.1 For the *minimum loading point*minimum loading point region:

- 22.1.4.1.1 Steam turbine <u>resource</u> share: $STShareMLP_k = \frac{SMLP \cdot (1 CSCM_k)}{MMLP_k}$; and
- 22.1.4.1.2 Combustion turbine <u>resource</u> share: $CTShareMLP_k = \frac{CMLP_k}{MMLP_k}$?
- 22.1.4.2 For the *dispatchable* region:
 - 22.1.4.2.1 Steam turbine <u>resource</u> share: $STShareDR_k = \frac{(1-CSCM_k)(SMCR \cdot STPortion_k - SMLP - SDF_k \cdot STPortion_k)}{MDR_k};$ and
 - 22.1.4.2.2 Combustion turbine $\frac{resource}{share: CTShareDR_k} = \frac{CMCR_k CMLP_k}{MDR_k}$; and
- 22.1.4.3 For the duct firing region:
 - 22.1.4.3.1 Steam turbine <u>resource</u> share shall be equal to 1; and
 - 22.1.4.3.2 Combustion turbine *resource* share shall be equal to 0.

22.2 Application of Physical Resource Deratings to the Pseudo-Unit Model

- 22.2.1 The *day-ahead market calculation engine* shall apply deratings submitted by *market participants* to the applicable *dispatchable* capacity and duct firing capacity parameters for a *pseudo-unit*, where:
 - 22.2.1.1 *CTCap_{h,k}* designates the capacity of combustion turbine *resource* $k \in \{1, ..., K\}$ in hour h as determined by submitted deratings;
 - 22.2.1.2 $STCap_h$ designates the capacity of the steam turbine <u>resource</u> in hour h as determined by submitted deratings; and
 - 22.2.1.3 $TotalQ_{h,k}$ designates the total *offered* quantity of *energy* for *pseudo-unit* $k \in \{1, ..., K\}$ in hour h.
- 22.2.2 The *day-ahead market calculation engine* shall solve for the following operating region parameters for hour $h \in [1,...,24]$ for each *pseudo-unit* $k \in \{1,...,K\}$:
 - 22.2.2.1 $MLP_{h,k}$ designates the minimum loading point of pseudo-unit k in hour h;
 - 22.2.2.2 $DR_{h,k}$ designates the *dispatchable* region capacity of *pseudo-unit* k in hour h; and

- 22.2.2.3 $DF_{h,k}$ designates the duct firing region capacity of *pseudo-unit* k in hour h.
- 22.2.3 Pre-processing of De-rates
 - 22.2.3.1 The *day-ahead market calculation engine* shall perform the following preprocessing steps to determine the available operating regions for a *pseudo-unit* based on the combustion turbine <u>resource</u> and steam turbine <u>resource</u> share and the application of the *pseudo-unit* deratings. For *pseudo-unit* $k \in \{1, ..., K\}$ for hour $h \in \{1, ..., 24\}$:
 - 22.2.3.1.1 Step 1: Calculate the amount of *offered energy* attributed to each combustion turbine <u>resource</u> ($CTAmt_{h,k}$) and steam turbine <u>resource</u> portion ($STAmt_{h,k}$):

If $TotalQ_{h,k} < MMLP_k$ then:

 $CTAmt_{h,k} = 0$; and

 $STAmt_{h,k} = 0.$

Otherwise:

 $CTAmtMLP = MMLP_k \cdot CTShareMLP_k$; and

 $STAmtMLP = MMLP_k \cdot STShareMLP_k$

If $TotalQ_{h,k} > MMLP_k + MDR_k$, then:

 $CTAmtDR = MDR_k \cdot CTShareDR_k$;

 $STAmtDR = MDR_k \cdot STShareDR_k$; and

 $STAmtDF = (1 - CSCM_k) \cdot (TotalQ_{h,k} - MMLP_k - MDR_k).$

Otherwise:

 $CTAmtDR = (TotalQ_{h,k} - MMLP_k) \cdot CTShareDR_k;$

 $STAmtDR = (TotalQ_{h,k} - MMLP_k) \cdot STShareDR_k;$

STAmtDF = 0;

 $CTAmt_{h,k} = CTAmtMLP + CTAmtDR$; and

 $STAmt_{h,k} = STAmtMLP + STAmtDR + STAmtDF.$

22.2.3.1.2 Step 2: Allocate the steam turbine <u>resource</u> capacity to each *pseudo-unit*:

$$PRSTCap_{h,k} = \left(\frac{STAmt_{h,k}}{\sum_{w \in \{1,\dots,K\}} STAmt_{h,w}}\right) \cdot STCap_h$$

22.2.3.1.3 Step 3: Determine if the *pseudo-unit* is available:

If $CTAmt_{h,k} < CMLP_k$, then the *pseudo-unit* is unavailable.

If $STAmt_{h,k} < SMLP \cdot (1 - CSCM_k)$, then the *pseudo-unit* is unavailable.

If $CTCap_{h,k} < CMLP_k$, then the *pseudo-unit* is unavailable.

If $PRSTCap_{h,k} < SMLP \cdot (1 - CSCM_k)$, then the *pseudo-unit* is unavailable.

22.2.3.1.4 Step 4: Initialize the operating region parameters for hour $h \in \{1, ..., 24\}$ to the model parameter values:

Set
$$MLP_{h,k} = MMLP_k$$
.

Set
$$DR_{h,k} = MDR_k$$
.

Set
$$DF_{h,k} = MDF_k$$
.

22.2.3.1.5 Step 5: Apply the derating on the combustion turbine <u>resource</u> to the *dispatchable* region:

Calculate P so that $CMLP_k + P \cdot CTShareDR_k \cdot MDR_k = CTCap_{h,k}$; and Set $DR_{h,k} = min(DR_{h,k}, P \cdot MDR_k)$.

22.2.3.1.6 Step 6: Apply the derating on the steam turbine <u>resource</u> to the duct firing and *dispatchable* regions for *pseudo-units* not operating in *single cycle mode*:

Calculate R so that $SMLP + R \cdot STShareDR_k \cdot MDR_k = PRSTCap_{h,k}$.

If
$$R \le 1$$
, set $DF_{h,k} = 0$, and $DR_{h,k} = min(DR_{h,k}, R \cdot MDR_k)$.

If R > 1, set $DF_{h,k} = min(DF_{h,k}, PRSTCap_{h,k} - SMLP - STShareDR_k \cdot MDR_k)$.

- 22.2.4 Available Energy Laminations
 - 22.2.4.1 The *day-ahead market calculation engine* shall determine the *offer* quantity laminations that may be scheduled for *energy* and *operating* reserve in each operating region for hour $h \in \{1, ..., 24\}$ for each *pseudo-unit* $k \in \{1, ..., K\}$, subject to section 22.2.4.2, where:
 - 22.2.4.1.1 *QMLP*_{h,k} designates the total quantity that may be scheduled in the *minimum loading point* region;
 - 22.2.4.1.2 $QDR_{h,k}$ designates the total quantity that may be scheduled in the *dispatchable* region; and

- 22.2.4.1.3 $QDF_{h,k}$ designates the total quantity that may be scheduled in the duct firing region.
- 22.2.4.2 The available *offered* quantity laminations shall be subject to the following conditions:

$$\begin{split} 0 &\leq QMLP_{h,k} \leq MLP_{h,k}; \\ 0 &\leq QDR_{h,k} \leq DR_{h,k}; \\ 0 &\leq QDF_{h,k} \leq DF_{h,k}; \\ \text{if } QMLP_{h,k} < MLP_{h,k}, \text{ then the } pseudo-unit \text{ is unavailable and } \\ QDR_{h,k} &= QDF_{h,k} = 0; \text{ and} \\ \text{if } QDR_{h,k} &< DR_{t,k}, \text{ then } QDF_{h,k} = 0. \end{split}$$

22.3 Convert Physical Resource Constraints to Pseudo-Unit Constraints

- 22.3.1 The *day-ahead market calculation engine* shall convert physical *resource* constraints to *pseudo-unit* constraints, where:
 - 22.3.1.1 $PSUMin_{h,k}^q$ designates the minimum limitation on $pseudo-unit\ k$ determined by translating constraint q. When constraint q does not provide a minimum limitation on $pseudo-unit\ k$, then $PSUMin_{h,k}^q$ shall be set equal to 0;
 - 22.3.1.2 $PSUMax_{h,k}^q$ designates the maximum limitation on $pseudo-unit\ k$ determined by translating constraint q. When constraint q does not provide a maximum limitation on $pseudo-unit\ k$, then $PSUMax_{h,k}^q$ shall be set equal to $MLP_{h,k}+DR_{h,k}+DF_{h,k}$; and
 - 22.3.1.3 $CTCmtd_{h,k} \in \{0,1\}$ designates whether combustion turbine <u>resource</u> $k \in \{1,...K\}$ is considered committed in hour $h \in \{1,...,24\}$.
- The *day-ahead market calculation engine* shall calculate the minimum and maximum limitations, subject to section 22.3.3.1, as follows:
 - 22.3.2.1 Minimum limitation: $MinDG_{h,k} = max_{q \in \{1...O\}} PSUMin_{h,k}^q$; and
 - 22.3.2.2 Maximum limitation: $MaxDG_{h,k} = min_{q \in \{1...O\}} PSUMax_{h,k}^q$.

where Q designates the number of constraints impacting a <u>combined</u> <u>cycle plant</u>combined cycle <u>facility</u> that have been provided to the <u>dayahead market calculation engine</u>.

- 22.3.3 Pseudo-unit Minimum and Maximum Constraints
 - 22.3.3.1 *Pseudo-unit* minimum and maximum constraints shall be calculated as follows:
 - 22.3.3.1.1 *PSUMin*_{h,k} = *PMin*, where *PMin* shall be a minimum constraint provided on *pseudo-unit* $k \in \{1, ..., K\}$ for hour $h \in \{1, ..., 24\}$; and
 - 22.3.3.1.2 $PSUMax_{h,k} = PMax$, where PMax shall be a maximum constraint provided on $pseudo-unit \ k \in \{1, ..., K\}$ for hour $h \in \{1, ..., 24\}$.
- 22.3.4 Combustion Turbine Resource Minimum and Maximum Constraints
 - 22.3.4.1 If a *pseudo-unit* is not flagged to operate in *single cycle mode*, then the combustion turbine <u>resource</u> minimum constraint shall be converted to a *pseudo-unit* constraint as follows:

If
$$CTMin < MLP_{h,k} \cdot CTShareMLP_k$$
, then set

$$STMinMLP = CTMin \cdot \left(\frac{STShareMLP_k}{CTShareMLP_k}\right)$$
; and

$$STMinDR = 0$$

Otherwise, if $CTMin \ge MLP_{h,k} \cdot CTShareMLP_k$, then set

$$STMinMLP = MLP_{h,k} \cdot STShareMLP_k$$
; and

$$STMinDR = \left(CTMin - MLP_{h,k} \cdot CTShareMLP_{k}\right) \cdot \left(\frac{STShareDR_{k}}{CTShareDR_{k}}\right)$$

$$PSUMin_{h,k} = CTMin + STMinMLP + STMinDR$$

22.3.4.2 If a *pseudo-unit* is flagged to operate in *single cycle mode*, then the combustion turbine <u>resource</u> minimum constraint shall be converted to a *pseudo-unit* constraint as follows:

$$PSUMin_{h,k} = CTMin$$

22.3.4.3 If a *pseudo-unit* is not flagged to operate in *single cycle mode*, then the combustion turbine <u>resource</u> maximum constraint shall be converted to a *pseudo-unit* constraint as follows:

If
$$CTMax < MLP_{h,k} \cdot CTShareMLP_k$$
, then $PSUMax_{h,k} = 0$

Otherwise, calculate the effect of the constraint on the steam turbine within the *minimum loading point* and *dispatchable* regions:

$$STMaxMLP = MLP_{h,k} \cdot STShareMLP_k$$

$$STMaxDR = \left(CTMax - MLP_{h,k} \cdot CTShareMLP_k\right) \cdot \left(\frac{STShareDR_k}{CTShareDR_k}\right)$$

$$PSUMax_{h,k} = CTMax + STMaxMLP + STMaxDR$$

22.3.4.4 If a *pseudo-unit* is flagged to operate in *single cycle mode*, then the combustion turbine <u>resource</u> maximum constraint shall be converted to a *pseudo-unit* constraint as follows:

$$PSUMax_{h,k} = CTMax$$

- 22.3.5 Steam Turbine Resource Minimum and Maximum Constraints
 - 22.3.5.1 The *day-ahead market calculation engine* shall convert a steam turbine *resource* minimum constraint to a *pseudo-unit* constraint as follows:
 - 22.3.5.1.1 Step 1: Identify $A \subseteq \{1, ..., K\}$, which shall indicate the set of *pseudo-units* to which the constraint may be allocated where *pseudo-unit* $k \in \{1, ..., K\}$ is placed in set A if and only if $CSCM_k=0$ and $CTCmtd_{h,k}=1$. If the set A is empty, then no further steps are required, otherwise proceed to Step 2.
 - 22.3.5.1.2 Step 2: Determine the steam turbine <u>resource</u> portion of the capacity of *pseudo-unit* $k \in A$:

$$STCap_k = QMLP_{h,k} \cdot STShareMLP_k + QDR_{h,k} \cdot STShareDR_k + QDF_{h,k}$$

- 22.3.5.1.3 Step 3: Allocate the *STMin* constraint to each *pseudo-unit* $k \in A$, where *STMin* constraint shall be allocated equally to each *pseudo-unit* $k \in A$ and *STPMin*_k is limited by *STCap*_k.
- 22.3.5.1.4 Step 4: The steam turbine <u>resource</u> portion minimum constraint shall be converted to a *pseudo-unit* constraint, where for each *pseudo-unit* $k \in A$:

If
$$STPMin_k < MLP_{h,k} \cdot STShareMLP_k$$
, then set

$$CTMinMLP_k = STPMin_k \cdot \left(\frac{CTShareMLP_k}{STShareMLP_k}\right)$$
; and

$$CTMinDR_k = 0$$

Otherwise, if $STPMin_k \ge MLP_{h,k} \cdot STShareMLP_k$, then set

$$CTMinMLP_k = MLP_{h,k} \cdot CTShareMLP_k$$
; and

$$CTMinDR_k = (STPMin_k - MLP_{h,k} \cdot STShareMLP_k) \cdot (\frac{CTShareDR_k}{STShareDR_k})$$

Therefore:

$$PSUMin_{h,k} = STPMin_k + CTMinMLP_k + CTMinDR_k$$

- 22.3.5.2 If *pseudo-units* with sufficient steam turbine <u>resource</u> capacity are not committed, then the *day-ahead market calculation engine* shall not convert the entire quantity of the steam turbine <u>resource</u> minimum constraint to *pseudo-unit* constraints.
- 22.3.5.3 The steam turbine <u>resource</u> maximum constraint shall be converted to a *pseudo-unit* constraint as follows:

$$PRSTMax_{h,k} = \left(\frac{STAmt_{h,k}}{\sum_{w \in \{1,\dots,K\}} STAmt_{h,w}}\right) \cdot STMax$$

If the prorated steam turbine maximum constraint limits the steam turbine portion to below its *minimum loading point*, then

$$PSUMax_{h,k} = 0$$

Otherwise, calculate R so that $SMLP + R \cdot STShareDR_k \cdot MDR_k = PRSTMax_{h,k}$

If
$$R \le 1$$
, set $PSUMax_{h,k} = MLP_{h,k} + min(DR_{h,k}, R \cdot MDR_k)$

If
$$R > 1$$
, set $PSUMax_{h,k} = MLP_{h,k} + DR_{h,k} + PRSTMax_{h,k} - SMLP - STShareDR_k \cdot MDR_k$

22.3.5.4 If the steam turbine <u>resource</u> minimum and maximum constraints are equal but do not convert to equal <u>pseudo-unit</u> minimum and maximum constraints, then the steam turbine <u>resource</u> minimum constraint conversion in section 22.3.5.1 shall be used to determine equal <u>pseudo-unit</u> minimum and maximum constraints.

22.4 Conversion of Pseudo-Unit Schedules to Physical Resource Schedules

- For a <u>combined cycle plant</u>eombined cycle <u>facility</u> with K combustion turbines <u>resources</u> and one steam turbine <u>resource</u>, the <u>day-ahead market calculation engine</u> shall compute the following <u>energy</u> and <u>operating reserve</u> schedules for hours $h \in \{1, ..., 24\}$:
 - 22.4.1.1 $CTE_{h,k}$ designates the *energy* schedule for combustion turbine <u>resource</u> $k \in \{1, ..., K\}$;
 - 22.4.1.2 *STPE*_{h,k} designates the *energy* schedule for the steam turbine *resource* portion of *pseudo-unit* $k \in \{1, ..., K\}$;
 - 22.4.1.3 STE_h designates the *energy* schedule for the steam turbine <u>resource</u>;
 - 22.4.1.4 $CT10S_{h,k}$ designates the synchronized *ten-minute operating reserve* schedule for combustion turbine *resource* $k \in \{1, ..., K\}$;
 - 22.4.1.5 $STP10S_{h,k}$ designates the synchronized *ten-minute operating reserve* schedule for the steam turbine <u>resource</u> portion of *pseudo-unit* $k \in \{1, ..., K\}$;
 - 22.4.1.6 $ST10S_h$ designates the synchronized *ten-minute operating reserve* schedule for the steam turbine <u>resource</u>;
 - 22.4.1.7 *CT*10 $N_{h,k}$ designates the non-synchronized *ten-minute operating reserve* schedule for combustion turbine <u>resource</u> $k \in \{1, ..., K\}$;
 - 22.4.1.8 *STP*10 $N_{h,k}$ designates the non-synchronized *ten-minute operating reserve* schedule for the steam turbine *resource* portion of *pseudo-unit* $k \in \{1, ..., K\}$;
 - 22.4.1.9 $ST10N_h$ designates the non-synchronized ten-minute operating reserve schedule for the steam turbine <u>resource</u>;
 - 22.4.1.10 $CT30R_{h,k}$ designates the *thirty-minute operating reserve* schedule for combustion turbine *resource* $k \in \{1, ..., K\}$;
 - 22.4.1.11 *STP*30 $R_{h,k}$ designates the *thirty-minute operating reserve* schedule for the steam turbine *resource* portion of *pseudo-unit* $k \in \{1, ..., K\}$; and
 - 22.4.1.12 $ST30R_h$ designates the *thirty-minute operating reserve* schedule for the steam turbine *resource*.

- 22.4.2 The *day-ahead market calculation engine* shall determine the following *energy* and *operating reserve* schedules for *pseudo-unit* $k \in \{1, ..., K\}$ in hour $h \in \{1, ..., 24\}$:
 - 22.4.2.1 $SE_{h,k}$ designates the total amount of *energy* scheduled and $SE_{h,k} = SEMLP_{h,k} + SEDR_{h,k} + SEDF_{h,k}$ where:
 - 22.4.2.1.1 SEMLP_{h,k} designates the portion of the schedule corresponding to the minimum loading point region, where $0 \le SEMLP_{h,k} \le QMLP_{h,k}$;
 - 22.4.2.1.2 SEDR_{h,k} designates the portion of the schedule corresponding to the *dispatchable* region, where $0 \le SEDR_{h,k} \le QDR_{h,k}$ and $SEDR_{h,k} > 0$ only if $SEMLP_{h,k} = QMLP_{h,k}$; and
 - 22.4.2.1.3 $SEDF_{h,k}$ designates the portion of the schedule corresponding to the duct firing region, where $0 \le SEDF_{h,k} \le QDF_{h,k}$ and $SEDF_{h,k} > 0$ only if $SEDR_{h,k} = QDR_{h,k}$;
 - 22.4.2.2 $S10S_{h,k}$ designates the total amount of synchronized *ten-minute operating* reserve scheduled;
 - 22.4.2.3 $S10N_{h,k}$ designates the total amount of non-synchronized ten-minute operating reserve scheduled. If the pseudo-unit cannot provide operating reserve from its duct firing region then $0 \le SE_{h,k} + S10S_{h,k} + S10N_{h,k} \le QMLP_{h,k} + QDR_{h,k}$; and
 - 22.4.2.4 S30R_{h,k} designates the total amount of thirty-minute operating reserve scheduled, where $0 \le SE_{h,k} + S10S_{h,k} + S10N_{h,k} + S30R_{h,k} \le QMLP_{h,k} + QDR_{h,k} + QDF_{h,k}$.
- 22.4.3 The *day-ahead market calculation engine* shall convert *pseudo-unit* schedules to physical *generation resource* schedules for *energy* and *operating reserve*, as follows:
 - 22.4.3.1 If $SE_{h,k} \ge MLP_{h,k}$, then:

```
CTE_{h,k} = SEMLP_{h,k} \cdot CTShareMLP_k + SEDR_{h,k} \cdot CTShareDR_k;
STPE_{h,k} = SEMLP_{h,k} \cdot STShareMLP_k + SEDR_{h,k} \cdot STShareDR_k + SEDF_{h,k};
RoomDR_{h,k} = QDR_{h,k} - SEDR_{h,k};
10SDR_{h,k} = min(RoomDR_{h,k}, S10S_{h,k});
10NDR_{h,k} = min(RoomDR_{h,k} - 10SDR_{h,k}, S10N_{h,k});
30RDR_{h,k} = min(RoomDR_{h,k} - 10SDR_{h,k} - 10NDR_{h,k}, S30R_{h,k});
CT10S_{h,k} = 10SDR_{h,k} \cdot CTShareDR_k;
STP10S_{h,k} = 10SDR_{h,k} \cdot STShareDR_k + (S10S_{h,k} - 10SDR_{h,k});
CT10N_{h,k} = 10NDR_{h,k} \cdot CTShareDR_k;
STP10N_{h,k} = 10NDR_{h,k} \cdot STShareDR_k + (S10N_{h,k} - 10NDR_{h,k});
CT30R_{h,k} = 30RDR_{h,k} \cdot CTShareDR_k;
and
STP30R_{h,k} = 30RDR_{h,k} \cdot STShareDR_k + (S30R_{h,k} - 30RDR_{h,k}).
```

- 22.4.3.2 If $SE_{h,k} < MLP_{h,k}$ and is ramping to minimum loading point, then the conversion shall be determined by the ramp up energy to minimum loading point.
- 22.4.3.3 The steam turbines <u>resources</u> portion schedules from section 22.4.3.1 shall be summed to obtain the steam turbine <u>resource</u> schedule as follows:

$$STE_h = \sum_{k=1,\dots,K} STPE_{h,k};$$

$$ST10S_h = \sum_{k=1,\dots,K} STP10S_{h,k};$$

$$ST10N_h = \sum_{k=1,\dots,K} STP10N_{h,k};$$
 and
$$ST30R_h = \sum_{k=1,\dots,K} STP30R_{h,k}.$$

23 Pricing Formulas

23.1 Purpose

23.1.1 The *day-ahead market calculation engine* shall calculate *locational marginal prices* using shadow prices, constraint sensitivities and marginal loss factors.

23.2 Sets, Indices and Parameters

- 23.2.1 The sets, indices and parameters used to calculate *locational marginal prices* are described in section 4. In addition, the following shadow prices from Passes 1 and 3 shall be used:
 - 23.2.1.1 SPEm $T_{h,c,f}^p$ designates the Pass p shadow price for the post-contingency transmission constraint for facility $f \in F$ in contingency $c \in C$ in hour h;
 - 23.2.1.2 $SPExtT_{h,z}^p$ designates the Pass p shadow price for the import or export limit constraint $z \in Z_{Sch}$ in hour h;
 - 23.2.1.3 SPL_h^p designates the Pass p shadow price for the *energy* balance constraint in hour h;
 - 23.2.1.4 $SPNIUExtBwdT_h^p$ designates the Pass p shadow price for the net interchange scheduling limit constraint limiting increases in net imports between hour (h-1) and hour h;
 - 23.2.1.5 $SPNIDExtBwdT_h^p$ designates the Pass p shadow price for the net interchange scheduling limit constraint limiting decreases in net imports between hour (h-1) and hour h;
 - 23.2.1.6 *SPNIUExtFwdT*_h^p designates the Pass p shadow price for the net interchange scheduling limit constraint limiting increases in net imports between hour h and hour (h + 1);
 - 23.2.1.7 *SPNIDExtFwdT*^p designates the Pass p shadow price for the net interchange scheduling limit constraint limiting decreases in net imports between hour h and hour (h + 1);
 - 23.2.1.8 $SPNormT_{h,f}^p$ designates the Pass p shadow price for the pre-contingency transmission constraint for *facility* $f \in F$ in hour h;
 - 23.2.1.9 $SP10S_h^p$ designates the Pass p shadow price for the total synchronized tenminute operating reserve requirement constraint in hour h;
 - 23.2.1.10 $SP10R_h^p$ designates the Pass p shadow price for the total *ten-minute* operating reserve requirement constraint in hour h;
 - 23.2.1.11 $SP30R_h^p$ designates the Pass p shadow price for the total *thirty-minute* operating reserve requirement constraint in hour h;
 - 23.2.1.12 $SPREGMin10R_{h,r}^{p}$ designates the Pass p shadow price for the minimum ten-minute operating reserve constraint for region $r \in ORREG$ in hour h;

- 23.2.1.13 *SPREGMin*30 $R_{h,r}^p$ designates the Pass p shadow price for the minimum *thirty-minute operating reserve* constraint for region $r \in ORREG$ in hour h;
- 23.2.1.14 $SPREGMax10R_{h,r}^{p}$ designates the Pass p shadow price for the maximum ten-minute operating reserve constraint for region $r \in ORREG$ in hour h; and
- 23.2.1.15 $SPREGMax30R_{h,r}^{p}$ designates the Pass p shadow price for the maximum thirty-minute operating reserve constraint for region $r \in ORREG$ in hour h.

23.3 Locational Marginal Prices for Energy

- 23.3.1 Energy Locational Marginal Prices for Delivery Points
 - 23.3.1.1 The *day-ahead market calculation engine* shall calculate a *locational marginal price* and components for *energy* for each Pass $p \in \{1,3\}$ and hour $h \in \{1, ..., 24\}$ for every bus $b \in L$ where a non-*dispatchable* or *dispatchable generation resource*, a *dispatchable load*, a *price responsive load*, an *hourly demand response resource*, or a *non-dispatchable load* is sited and:
 - 23.3.1.1.1 $LMP_{h,b}^{p}$ designates the Pass p hour h locational marginal price for energy;
 - 23.3.1.1.2 $PRef_h^p$ designates the Pass p hour h energy locational marginal price for energy at the reference bus;
 - 23.3.1.1.3 $PLoss_{h,b}^{p}$ designates the Pass p hour h loss component; and
 - 23.3.1.1.4 $PCong_{h,b}^p$ designates the Pass p hour h congestion component.
 - 23.3.1.2 The day-ahead market calculation engine shall calculate an initial locational marginal price for energy, a locational marginal price for energy at the reference bus, a loss component and a congestion component for Pass $p \in \{1,3\}$ at bus $b \in L$ in hour $h \in \{1,...,24\}$, as follows:

$$\begin{split} InitLMP^p_{h,b} &= InitPRef^p_h + InitPLoss^p_{h,b} + InitPCong^p_{h,b} \\ &\text{where} \\ &InitPRef^p_h = SPL^p_h; \\ &InitPLoss^p_{h,b} = MglLoss^p_{h,b} \cdot SPL^p_h; \\ &\text{and} \\ &InitPCong^p_{h,b} = \sum_{f \in F_h} PreConSF_{h,f,b} \cdot SPNormT^p_{h,f} \\ &+ \sum_{c \in C} \sum_{f \in F_c} SF_{h,c,f,b} \cdot SPEmT^p_{h,c,f} \end{split}$$

23.3.1.3 If the initial locational marginal price for energy at the reference bus $(InitPRef_h^p)$ is not within the settlement bounds (EngyPrcFlr, EngyPrcCeil), then the day-ahead market calculation engine shall modify the locational marginal price for energy at the reference bus as follows:

If
$$InitPRef_h^p > EngyPrcCeil$$
, $PRef_h^p = EngyPrcCeil$
If $InitPRef_h^p < EngyPrcFlr$, $PRef_h^p = EngyPrcFlr$
Otherwise, $PRef_h^p = InitPRef_h^p$

23.3.1.4 If the initial locational marginal price for energy (InitLMP $_{h,b}^p$) is not within the settlement bounds (EngyPrcFlr, EngyPrcCeil), then the dayahead market calculation engine shall modify the locational marginal price for energy as follows:

If
$$InitLMP_{h,b}^{p} > EngyPrcCeil$$
, $LMP_{h,b}^{p} = EngyPrcCeil$
If $InitLMP_{h,b}^{p} < EngyPrcFlr$, $LMP_{h,b}^{p} = EngyPrcFlr$
Otherwise, $LMP_{h,b}^{p} = InitLMP_{h,b}^{p}$

23.3.1.5 The *day-ahead market calculation engine* shall modify the loss component as follows:

If
$$PRef_h^p \neq InitPRef_h^p$$
, then $PLoss_{h,b}^p = MglLoss_{h,b}^p \cdot PRef_h^p$
Otherwise, $PLoss_{h,b}^p = InitPLoss_{h,b}^p$

23.3.1.6 The *day-ahead market calculation engine* shall modify the congestion component as follows:

If $LMP_{h,b}^p - PRef_h^p - PLoss_{h,b}^p$ and $InitPCong_{h,b}^p$ have the same mathematical sign, then $PCong_{h,b}^p = LMP_{h,b}^p - PRef_h^p - PLoss_{h,b}^p$ Otherwise, $PCong_{h,b}^p = 0$ and $PLoss_{h,b}^p = LMP_{h,b}^p - PRef_h^p$

- 23.3.2 Energy Locational Marginal Prices for Intertie Metering Points
 - 23.3.2.1 The *day-ahead market calculation engine* shall calculate a *locational marginal price* and components for *energy* for each Pass $p \in \{1,3\}$ and hour $h \in \{1,...,24\}$ for *intertie zone* bus $d \in D$, where:
 - 23.3.2.1.1 ExtLMP $_{h,d}^p$ designates the Pass p hour h locational marginal price for energy;
 - 23.3.2.1.2 IntLMP $_{h,d}^p$ designates the Pass p hour h intertie border price for energy;
 - 23.3.2.1.3 $ICP_{h,d}^{p}$ designates the Pass p hour h intertie congestion price;
 - 23.3.2.1.4 $PRef_h^p$ designates the Pass p hour h locational marginal price for energy at the reference bus;
 - 23.3.2.1.5 $PLoss_{h,d}^{p}$ designates the Pass p hour h loss component;
 - 23.3.2.1.6 $PIntCong_{h,d}^{p}$ designates the Pass p hour h internal congestion component for *energy*;
 - 23.3.2.1.7 $PExtCong_{h,d}^{p}$ designates the Pass p hour h external congestion component for the *intertie congestion price*; and
 - 23.3.2.1.8 $PNISL_{h,d}^{p}$ designates the Pass p hour h net interchange scheduling limit congestion component for the *intertie* congestion price.
 - 23.3.2.2 The *day-ahead market calculation engine* shall calculate an initial *locational marginal price* for *energy*, a *locational marginal price* for *energy* for the *reference bus*, a loss component and a congestion component for *energy* for Pass p at *intertie zone* bus $d \in D_a$ in *intertie zone* $a \in A$ in hour $h \in \{1, ..., 24\}$, subject to section 23.3.2.8 and 23.3.2.9, as follows:

$$InitExtLMP_{h,d}^{p} = InitIntLMP_{h,d}^{p} + InitICP_{h,d}^{p}$$
 where

$$InitPRef_h^p = SPL_h^p;$$

$$InitPLoss_{h,d}^p = MglLoss_{h,d}^p \cdot SPL_h^p;$$

$$\begin{split} InitPIntCong_{h,d}^{p} &= \sum_{f \in F_{h}} PreConSF_{h,f,d} \cdot SPNormT_{h,f}^{p} \\ &+ \sum_{c \in C} \sum_{f \in F_{h,c}} SF_{h,c,f,d} \cdot SPEmT_{h,c,f}^{p} \,; \end{split}$$

$$InitIntLMP_{h,d}^{p} = InitPRef_{h}^{p} + InitPLoss_{h,d}^{p} + InitPIntCong_{h,d}^{p};$$

$$InitICP^p_{h,d} = InitPExtCong^p_{h,d} + InitPNISL^p_{h,d}; \\$$

$$InitPExtCong^{p}_{h,d} = \sum_{z \in Z_{SCh}} EnCoeff_{a,z} \cdot SPExtT^{p}_{h,z};$$

and

$$InitPNISL_{h,d}^{p} = SPNIUExtBwdT_{h}^{p} - SPNIUExtFwdT_{h}^{p}$$
$$- SPNIDExtBwdT_{h}^{p} + SPNIDExtFwdT_{h}^{p}$$

- 23.3.2.3 If the initial locational marginal price for energy (InitExtLMP $_{h,d}^p$) is not within the settlement bounds (EngyPrcFlr, EngyPrcCeil), then the dayahead market calculation engine shall modify the intertie border price for energy, and its components, as follows:
 - 23.3.2.3.1 The initial locational marginal price for the reference bus $(InitPRef_h^p)$ shall be modified per section 23.3.1.3;
 - 23.3.2.3.2 The initial intertie border price (InitIntLMP_{h,d}^p) shall be modified per section 23.3.1.4, where InitLMP_{h,b}^p = InitIntLMP_{h,d}^p;
 - 23.3.2.3.3 The initial loss component ($InitPLoss_{h,b}^{p}$) shall be modified per section 23.3.1.5; and
 - 23.3.2.3.4 The initial congestion component ($InitPCong_{h,b}^p$) shall be modified per section 23.3.1.6.
- 23.3.2.4 If the initial locational marginal price for energy (InitExtLMP $_{h,d}^p$) is not within the settlement bounds (EngyPrcFlr, EngyPrcCeil), then the day-

ahead market calculation engine shall modify the *locational marginal* price for energy, as follows:

If
$$InitExtLMP_{h,d}^p > EngyPrcCeil$$
, set $ExtLMP_{h,d}^p = EngyPrcCeil$
If $InitExtLMP_{h,d}^p < EngyPrcFlr$, set $ExtLMP_{h,d}^p = EngyPrcFlr$

Otherwise, set
$$ExtLMP_{h,d}^p = InitExtLMP_{h,d}^p$$

23.3.2.5 If the modified *locational marginal price* for *energy* ($ExtLMP_{h,d}^p$) is equal to the *intertie border price* for *energy* ($IntLMP_{h,d}^p$), then the *day-ahead market calculation engine* shall modify the external congestion component for the *intertie congestion price* and net interchange scheduling limit congestion components for the *intertie congestion price*, as follows:

If
$$ExtLMP_{h,d}^p = IntLMP_{h,d}^p$$
 set $PExtCong_{h,d}^p = 0$ and $PNISL_{h,d}^p = 0$

23.3.2.6 If the modified locational marginal price for energy $(ExtLMP_{h,d}^p)$ is not equal to the intertie border price for energy $(IntLMP_{h,d}^p)$, then the dayahead market calculation engine shall modify the external congestion component for the intertie congestion price and net interchange scheduling limit congestion components for the intertie congestion price, as follows:

If
$$ExtLMP_{h,d}^p \neq IntLMP_{h,d}^p$$
, set

$$\begin{split} PNISL^p_{h,d} &= (ExtLMP^p_{h,d} - IntLMP^p_{h,d}) \\ &\cdot \left(\frac{InitPNISL^p_{h,d}}{InitPNISL^p_{h,d} + InitPExtCong^p_{h,d}} \right) \end{split}$$

If $PNISL_{h,d}^p > NISLPen$, $PNISL_{h,d}^p = NISLPen$

If $PNISL_{h,d}^{p} < (-1) \cdot NISLPen$, $PNISL_{h,d}^{p} = (-1) \cdot NISLPen$

Then $PExtCong_{h,d}^{p} = ExtLMP_{h,d}^{p} - IntLMP_{h,d}^{p} - PNISL_{h,d}^{p}$

23.3.2.7 The *day-ahead market calculation engine* shall calculate the *intertie congestion price* as follows:

$$ICP_{hd}^{p} = PExtCong_{hd}^{p} + PNISL_{hd}^{p}$$

23.3.2.8 The *locational marginal price* for *energy* calculated by the *day-ahead* market calculation engine shall be the same for all boundary entity resource buses at the same intertie zone. Intertie transactions associated

with the same *boundary entity resource* bus, but specified as occurring at different *intertie zones*, subject to phase shifter operation, shall be modelled as flowing across independent paths. Pricing of these transactions shall utilize shadow prices associated with the internal transmission constraints, *intertie* limits and transmission losses applicable to the path associated to the relevant *intertie zone*.

23.3.2.9 When an *intertie zone* is out-of-service, the *intertie* limits for that *intertie zone* will be set to zero and all import and export *boundary entity resources* for that *intertie zone* will receive a zero schedule and the *locational marginal price* for *energy* shall be set to the *intertie border price* for *energy*.

23.3.3 Zonal Prices for Energy

23.3.3.1 The *day-ahead market calculation engine* shall calculate the zonal price for *energy* and its components for each Pass $p \in \{1,3\}$ and hour $h \in \{1, ..., 24\}$ for each *virtual transaction zone* $m \in M$, as follows:

$$VZonalP_{h,m}^{p} = PRef_{h}^{p} + VZonalPLoss_{h,m}^{p} + VZonalPCong_{h,m}^{p}$$

where

$$VZonalPLoss_{h,m}^{p} = \sum_{b \in L_{m}^{VIRT}} WF_{h,m,b}^{VIRT} \cdot PLoss_{h,b}^{p}$$

and

$$VZonalPCong_{h,m}^{p} = \sum_{b \in L_{m}^{VIRT}} WF_{h,m,b}^{VIRT} \cdot PCong_{h,b}^{p}$$

23.3.3.2 The *day-ahead market calculation engine* shall calculate the zonal price for *energy* and its components for each Pass $p \in \{1,3\}$ and hour $h \in \{1, ..., 24\}$ for *non-dispatchable load* zone, $y \in Y$ as follows:

$$ZonalP_{h,y}^{p} = PRef_{h}^{p} + ZonalPLoss_{h,y}^{p} + ZonalPCong_{h,y}^{p}$$
 where

$$ZonalPLoss_{h,y}^{p} = \sum_{b \in L_{y}^{NDL}} WF_{h,y,b}^{NDL} \cdot PLoss_{h,b}^{p}$$

and

$$ZonalPCong_{h,y}^{p} = \sum_{b \in L_{y}^{NDL}} WF_{h,y,b}^{NDL} \cdot PCong_{h,b}^{p}$$

23.3.3.3 The day-ahead market Ontario zonal price is calculated per section
23.3.3.2 where the non-dispatchable load zone is comprised of all non-dispatchable loads within Ontario.

23.3.4 Pseudo-Unit Pricing

- 23.3.4.1 The *day-ahead market calculation engine* shall calculate a *locational marginal price* and components for *energy* for each Pass $p \in \{1,3\}$ and hour $h \in \{1,...,24\}$ for every *pseudo-unit* $k \in \{1,...,K\}$ where:
 - 23.3.4.1.1 $CTMglLoss_{h,k}^{p}$ designates the marginal loss factor for the combustion turbine <u>resource</u> identified by <u>pseudo-unit</u> k for hour h in Pass p;
 - 23.3.4.1.2 $STMglLoss_{h,k}^{p}$ designates the marginal loss factor for the steam turbine <u>resource</u> identified by <u>pseudo-unit</u> k for hour h in Pass p;
 - 23.3.4.1.3 $CTPreConSF_{h,f,k}$ designates the pre-contingency sensitivity factor for the combustion turbine <u>resource</u> identified by <u>pseudo-unit</u> k on facility f during hour h under pre-contingency conditions;
 - 23.3.4.1.4 $STPreConSF_{h,f,k}$ designates the pre-contingency sensitivity factor for the steam turbine <u>resource</u> identified by *pseudo-unit k* on *facility f* during hour *h* under precontingency conditions;
 - 23.3.4.1.5 $CTSF_{h,c,f,k}$ designates the post-contingency sensitivity factor for the combustion turbine <u>resource</u> identified by pseudo-unit k on facility f during hour h under post-contigency conditions for contingency c; and
 - 23.3.4.1.6 $STSF_{h,c,f,k}$ designates the post-contingency sensitivity factor for the steam turbine <u>resource</u> identified by *pseudo-unit k* on *facility f* during hour *h* under post-contingency conditions for contingency *c*.
- 23.3.4.2 The day-ahead market calculation engine shall calculate an initial locational marginal price for energy, a locational marginal price for energy at the reference bus, a loss component and a congestion component for Pass $p \in \{1,3\}$ for every pseudo-unit $k \in \{1,...,K\}$ in hour $h \in \{1,...,24\}$, as follows:

$$InitLMP_{h,k}^{p} = InitPRef_{h}^{p} + InitPLoss_{h,k}^{p} + InitPCong_{h,k}^{p}$$
 where

nere

$$InitPRef_h^p = SPL_h^p$$
;

$$InitPLoss_{h,k}^{p} = MglLoss_{h,k}^{p} \cdot SPL_{h}^{p};$$

and

$$\begin{split} InitPCong_{h,k}^{p} &= \sum_{f \in F_{h}} PreConSF_{h,f,k} \cdot SPNormT_{h,f}^{p} \\ &+ \sum_{c \in C} \sum_{f \in F_{h,c}} SF_{h,c,f,k} \cdot SPEmT_{h,c,f}^{p} \end{split}$$

23.3.4.3 If *pseudo-unit* $k \in \{1,..,K\}$ is scheduled within its Minimum Loading Point range or not scheduled at all, its marginal loss and sensitivity factors shall be:

$$\begin{aligned} \mathit{MglLoss}_{h,k}^p &= \mathit{CTShareMLP}_k \cdot \mathit{CTMglLoss}_{h,k}^p + \mathit{STShareMLP}_k \\ &\cdot \mathit{STMglLoss}_{h,k}^p \end{aligned}$$

$$\begin{split} PreConSF_{h,f,k} &= \mathit{CTShareMLP}_k \cdot \mathit{CTPreConSF}_{h,f,k} + \mathit{STShareMLP}_k \\ &\cdot \mathit{STPreConSF}_{h,f,k} \end{split}$$

$$SF_{h,c,f,k} = CTShareMLP_k \cdot CTSF_{h,c,f,k} + STShareMLP_k \cdot STSF_{h,c,f,k}$$

23.3.4.4 If *pseudo-unit* $k \in \{1,...,K\}$ is scheduled within its *dispatchable* region, its marginal loss and sensitivity factors shall be:

$$\begin{aligned} MglLoss^p_{h,k} &= CTShareDR_k \cdot CTMglLoss^p_{h,k} + STShareDR_k \\ &\cdot STMglLoss^p_{h,k} \end{aligned}$$

$$\begin{split} \mathit{PreConSF}_{h,f,k} \\ &= \mathit{CTShareDR}_k \cdot \mathit{CTPreConSF}_{h,f,k} + \mathit{STShareDR}_k \\ &\cdot \mathit{STPreConSF}_{h,f,k} \end{split}$$

$$SF_{h,c,f,k} = CTShareDR_k \cdot CTSF_{h,c,f,k} + STShareDR_k \cdot STSF_{h,c,f,k}$$

23.3.4.5 If *pseudo-unit* $k \in \{1,...,K\}$ is scheduled within its duct firing region, its marginal loss and sensitivity factors shall be:

$$MglLoss_{h,k}^{p} = STMglLoss_{h,k}^{p}$$

 $PreConSF_{h,f,k} = STPreConSF_{h,f,k}$
 $SF_{h,c,f,k} = STSF_{h,c,f,k}$

23.4 Locational Marginal Prices for Operating Reserve

- 23.4.1 Operating Reserve Locational Marginal Prices for Delivery Points
 - 23.4.1.1 The *day-ahead market calculation engine* shall calculate a *locational marginal price* and components for *operating reserve* for each Pass $p \in \{1,3\}$ and hour $h \in \{1,...,24\}$ for a *delivery point* associated with the *dispatchable generation resource* and *dispatchable load* at bus $b \in B$, where:
 - 23.4.1.1.1 $L30RP_{h,b}^{p}$ designates the Pass p hour h locational marignal price for thirty-minute operating reserve;
 - 23.4.1.1.2 $P30RRef_h^p$ designates the Pass p hour h locational marignal price for thirty-minute operating reserve at the reference bus;
 - 23.4.1.1.3 $P30RCong_{h,b}^{p}$ designates the Pass p hour h congestion component for *thirty-minute operating reserve*;
 - 23.4.1.1.4 $L10NP_{h,b}^{p}$ designates the Pass p hour h locational marignal price for non-synchronized ten-minute operating reserve;
 - 23.4.1.1.5 $P10NRef_h^p$ designates the Pass p hour h locational marignal price for non-synchronized ten-minute operating reserve at the reference bus;
 - 23.4.1.1.6 $P10NCong_{h,b}^{p}$ designates the Pass p hour h congestion component for non-synchronized ten-minute operating reserve;
 - 23.4.1.1.7 $L10SP_{h,b}^{p}$ designates the Pass p hour h locational marignal price for synchronized ten-minute operating reserve;
 - 23.4.1.1.8 $P10SRef_h^p$ designates the Pass p hour h locational marignal price for synchronized ten-minute operating reserve at the reference bus;

- 23.4.1.1.9 $P10SCong_{h,b}^{p}$ designates the Pass p hour h congestion component for synchronized *ten-minute operating reserve*; and
- 23.4.1.1.10 $ORREG_b \subseteq ORREG$ designates the subset of ORREG consisting of regions that include bus b.
- 23.4.1.2 The *day-ahead market calculation engine* shall calculate an initial *locational marginal price*, a *locational marginal price* at the *reference bus*, and congestion components for Pass p for a *delivery point* associated with the *dispatchable generation resource* and *dispatchable load* at bus $b \in B$ in hour $h \in \{1, ..., 24\}$, for each class of *operating reserve*, as follows:

$$InitL30RP^{p}_{h,b} = InitP30RRef^{p}_{h} + InitP30RCong^{p}_{h,b}$$
 where
$$InitP30RRef^{p}_{h} = SP30R^{p}_{h}$$
 and
$$InitP30RCong^{p}_{h,b}$$

$$= \sum_{r \in ORREG_{b}} SPREGMin30R^{p}_{h,r}$$

$$-\sum_{r \in ORREG_{b}} SPREGMax30R^{p}_{h,r}$$

$$InitL10NP^{p}_{h,b} = InitP10NRef^{p}_{h} + InitP10NCong^{p}_{h,b}$$
 where

$$InitP10NRef_h^p = SP10R_h^p + SP30R_h^p$$
 and
$$InitP10NCong_{h,b}^p$$

$$= \sum_{r \in ORREG_b} (SPREGMin10R_{h,r}^p)$$

$$- \sum_{r \in ORREG_b} (SPREGMax10R_{h,r}^p)$$

$$- \sum_{r \in ORREG_b} (SPREGMax30R_{h,r}^p)$$

$$InitL10SP_{h,b}^p = InitP10SRef_h^p + InitP10SCong_{h,b}^p$$
 where
$$InitP10SRef_h^p = SP10S_h^p + SP10R_h^p + SP30R_h^p$$
 and
$$InitP10SCong_{h,b}^p = \sum_{r \in ORREG_b} (SPREGMin10R_{h,r}^p + SPREGMin30R_{h,r}^p)$$

$$- \sum_{r \in ORREG_b} (SPREGMax10R_{h,r}^p + SPREGMax30R_{h,r}^p)$$

$$InitL30RP_{h,b}^p = InitP30RRef_h^p + InitP30RCong_{h,b}^p$$
 where
$$InitP30RRef_h^p = SP30R_h^p$$
 and
$$InitP30RCong_{h,b}^p = SP30R_h^p$$
 and
$$InitP30RCong_{h,b}^p = SP30R_h^p$$

$$= \sum_{r \in ORREG_b} SPREGMin30R_{h,r}^p$$

$$+ \sum_{r \in ORREG_b} SPREGMax30R_{h,r}^p$$

and

$$InitL10NP_{h,b}^{p} = InitP10NRef_{h}^{p} + InitP10NCong_{h,b}^{p}$$
 where
$$InitP10NRef_{h}^{p} = SP10R_{h}^{p} + SP30R_{h}^{p}$$
 and
$$InitP10NCong_{h,b}^{p} = \sum_{r \in ORREG_{b}} (SPREGMin10R_{h,r}^{p} + SPREGMin30R_{h,r}^{p}) + \sum_{r \in ORREG_{b}} (SPREGMax10R_{h,r}^{p} + SPREGMax30R_{h,r}^{p})$$

$$InitL10SP_{h,b}^{p} = InitP10SRef_{h}^{p} + InitP10SCong_{h,b}^{p}$$
 where
$$InitP10SRef_{h}^{p} = SP10S_{h}^{p} + SP10R_{h}^{p} + SP30R_{h}^{p}$$
 and
$$InitP10SCong_{h,b}^{p} = (SPREGMin10R_{h,r}^{p} + SPREGMin30R_{h,r}^{p}) + \sum_{r \in ORREG_{b}} (SPREGMax10R_{h,r}^{p}) + \sum_{r \in ORREG_{b}} (SPREGMax10R_{h,r}^{p})$$

23.4.1.3 If the initial locational marginal price at the reference bus $(InitP30RRef_h^p, InitP10NRef_h^p, or\ InitP10SRef_h^p)$ is not within the settlement bounds (ORPrcFlr, ORPrcCeil), then the day-ahead market calculation engine shall modify the initial locational marginal prices at the reference bus for each class of operating reserve as follows:

+ $SPREGMax30R_{hr}^{p}$

If $IInitP30RRef_h^p > ORPrcCeil$, $P30RRef_h^p = ORPrcCeil$;

If $InitP30RRef_h^p < ORPrcFlr$, $P30RRef_h^p = ORPrcFlr$, Otherwise, $P30RRef_h^p = InitP30RRef_h^p$.

If $InitP10NRef_h^p > ORPrcCeil$, $P10NRef_h^p = ORPrcCeil$;

If $InitP10NRef_h^p < ORPrcFlr$, $P10NRef_h^p = ORPrcFlr$;

Otherwise, $P10NRef_h^p = InitP10NRef_h^p$.

If
$$InitP10SRef_h^p > ORPrcCeil$$
, $P10SRef_h^p = ORPrcCeil$, If $InitP10SRef_h^p < ORPrcFlr$, $P10SRef_h^p = ORPrcFlr$, Otherwise, $P10SRef_h^p = InitP10SRef_h^p$

23.4.1.4 If the initial locational marginal price $(InitL30RP_{h,b}^p, InitL10NP_{h,b}^p, or\ InitL10SP_{h,b}^p)$ is not within the settlement bounds (ORPrcFlr, ORPrcCeil), then the day-ahead market calculation engine shall modify the initial locational marginal price for each class of operating reserve as follows:

If
$$InitL30RP_{h,b}^{p} > ORPrcCeil$$
, $L30RP_{h,b}^{p} = ORPrcCeil$;

If $InitL30RP_{h,b}^{p} < ORPrcFlr$, $L30RP_{h,b}^{p} = ORPrcFlr$;

Otherwise, $L30RP_{h,b}^{p} = InitL30RP_{h,b}^{p}$.

If $InitL10NP_{h,b}^{p} > ORPrcCeil$, $L10NP_{h,b}^{p} = ORPrcCeil$;

If $InitL10NP_{h,b}^{p} < ORPrcFlr$, $L10NP_{h,b}^{p} = ORPrcFlr$;

Otherwise, $L10NP_{h,b}^{p} = InitL10NP_{h,b}^{p}$.

If $InitL10SP_{h,b}^{p} > ORPrcCeil$, $L10SP_{h,b}^{p} = ORPrcCeil$;

If $InitL10SP_{h,b}^{p} < ORPrcFlr$, $L10SP_{h,b}^{p} = ORPrcFlr$;

Otherwise, $L10SP_{h,b}^{p} = InitL10SP_{h,b}^{p} = ORPrcFlr$;

23.4.1.5 If the initial locational marginal price (InitL30 $RP_{h,b}^p$, InitL10 $NP_{h,b}^p$, or InitL10 $SP_{h,b}^p$) is not within the settlement bounds (ORPrcFlr, ORPrcCeil), then the day-ahead market calculation engine shall modify the congestion component for each class of operating reserve, as follows:

Set
$$P30RCong_{h,b}^p = L30RP_{h,b}^p - P30RRef_h^p$$
;
Set $P10NCong_{h,b}^p = L10NP_{h,b}^p - P10NRef_h^p$; and
Set $P10SCong_{h,b}^p = L10SP_{h,b}^p - P10SRef_h^p$.

- 23.4.2 Operating Reserve Locational Marginal Prices for Intertie Metering Points
 - 23.4.2.1 The *day-ahead market calculation engine* shall calculate a *locational marginal price* and components for *operating reserve* for each Pass $p \in \{1,3\}$ and hour $h \in \{1,...,24\}$ for *intertie zone* bus $d \in D$, where:
 - 23.4.2.1.1 ExtL30RP $_{h,d}^p$ designates the Pass p hour h locational marginal price for thirty-minute operating reserve;

- 23.4.2.1.2 P30RRef $_h^p$ designates the Pass p hour h locational marginal price for thirty-minute operating reserve at the reference bus;
- 23.4.2.1.3 $P30RIntCong_{h,d}^{p}$ designates the Pass p hour h internal congestion component for *thirty-minute operating reserve*;
- 23.4.2.1.4 $P30RExtCong_{h,d}^{p}$ designates the Pass p hour h intertie congestion component for thirty-minute operating reserve;
- 23.4.2.1.5 $ExtL10NP_{h,d}^{p}$ designates the Pass p hour h non-synchronized ten-minute operating reserve price;
- 23.4.2.1.6 P10NRef_h^p designates the Pass *p* hour *h locational* marginal price for non-synchronized ten-minute operating reserve at the reference bus;
- 23.4.2.1.7 $P10NIntCong_{h,d}^{p}$ designates the Pass p hour h internal congestion component for non-synchronized *ten-minute operating reserve*;
- 23.4.2.1.8 $P10NExtCong_{h,d}^{p}$ designates the Pass p hour h intertie congestion component for non-synchronized ten-minute operating reserve; and
- 23.4.2.1.9 $ORREG_d \subseteq ORREG$ designates the subset of ORREG consisting of regions that include bus d.
- 23.4.2.2 The day-ahead market calculation engine shall calculate an initial locational marginal price, a locational marginal price at the reference bus, an internal congestion component and an intertie congestion component for Pass p at intertie zone bus $d \in D_a$ in intertie zone $a \in A$ in hour $h \in \{1, ..., 24\}$, for each class of operating reserve, subject to sections 23.4.2.5 and 23.4.2.6, as follows:

$$\begin{split} InitExtL30RP^p_{h,d} \\ &= InitP30RRef^p_h + InitP30RIntCong^p_{h,d} \\ &+ InitP30RExtCong^p_{h,d} \end{split}$$

where

 $InitP30RRef_{h}^{p} = SP30R_{h}^{p};$

$$InitP30RIntCong_{h,d}^{p}$$

$$= \sum_{r \in ORREG_{d}} SPREGMin30R_{h,r}^{p}$$

$$- \sum_{r \in ORREG_{d}} SPREGMax30R_{h,r}^{p};$$

$$P30RExtCong_{h,d}^{p}$$

$$InitP30RExtCong_{h,d}^{p}$$

$$= -\sum_{z \in Z_{Sch}} 0.5 \cdot (EnCoeff_{a,z} + 1) \cdot SPExtT_{h,z}^{p}$$

$$InitExtL10NP_{h,d}^{p}$$

$$\begin{split} InitExtL10NP^p_{h,d} \\ &= InitP10NRef^p_h + InitP10NIntCong^p_{h,d} \\ &+ InitP10NExtCong^p_{h,d} \end{split}$$

where

$$InitP10NRef_h^p = SP10R_h^p + SP30R_h^p;$$

$$\begin{split} InitP10NIntCong_{h,d}^{p} \\ &= \sum_{r \in ORREG_{d}} \left(SPREGMin10R_{h,r}^{p} + SPREGMin30R_{h,r}^{p}\right) \\ &- \sum_{r \in ORREG_{d}} \left(SPREGMax10R_{h,r}^{p} \\ &+ SPREGMax30R_{h,r}^{p}\right) \end{split}$$

and

$$\begin{split} InitP10NExtCong_{h,d}^{p} \\ &= -\sum_{z \in Z_{Sch}} 0.5 \cdot \left(EnCoeff_{a,z} + 1 \right) \cdot SPExtT_{h,z}^{p} | \end{split}$$

$$\begin{split} InitExtL30RP^p_{h,d} \\ &= InitP30RRef^p_h + InitP30RIntCong^p_{h,d} \\ &+ InitP30RExtCong^p_{h,d} \end{split}$$

where

 $InitP30RRef_h^p = SP30R_h^p;$

$$InitP30RIntCong_{h,d}^{p}$$

$$= \sum_{r \in ORREG_{d}} SPREGMin30R_{h,r}^{p}$$

$$+ \sum_{r \in ORREG_{d}} SPREGMax30R_{h,r}^{p};$$

and

InitP30RExtCong_{h,d}

$$= \sum_{z \in Z_{Sch}} 0.5 \cdot (EnCoeff_{a,z} + 1) \cdot SPExtT_{h,z}^{p}$$

$$InitExtL10NP^{p}_{h,d} \\ = InitP10NRef^{p}_{h} + InitP10NIntCong^{p}_{h,d} \\ + InitP10NExtCong^{p}_{h,d} \\ \text{where} \\ InitP10NRef^{p}_{h} = SP10R^{p}_{h} + SP30R^{p}_{h}; \\ InitP10NIntCong^{p}_{h,d} \\ = \sum_{r \in ORREG_{d}} (SPREGMin10R^{p}_{h,r} \\ + SPREGMin30R^{p}_{h,r}) \\ + \sum_{r \in ORREG_{d}} (SPREGMax10R^{p}_{h,r}) \\ + SPREGMax30R^{p}_{h,r}) \\ \text{and} \\ InitP10NExtCong^{p}_{h,d} \\ = \sum_{z \in Z_{Sch}} 0.5 \cdot (EnCoeff_{a,z} + 1) \cdot SPExtT^{p}_{h,z}$$

23.4.2.3 If the initial *locational marginal price* (*InitExtL30RP*_{h,b}) is not within the *settlement* bounds (*ORPrcFlr,ORPrcCeil*), then the *day-ahead market* calculation engine shall modify the initial *locational marginal price*, the *locational marginal price* at the *reference bus*, and the external congestion component for *thirty-minute operating reserve* as follows:

IntL30
$$R = InitP30RRef_h^p + InitP30RIntCong_{h,d}^p$$

If $InitP30RRef_h^p > ORPrcCeil$, $P30RRef_h^p = ORPrcCeil$;
If $InitP30RRef_h^p < ORPrcFlr$, $P30RRef_h^p = ORPrcFlr$,
Otherwise, $P30RRef_h^p = InitP30RRef_h^p$;
Set $P30RIntCong_{h,d}^p = ExtL30RP_{h,d}^p - P30RRef_h^p$
If $InitExtL30RP_{h,b}^p > ORPrcCeil$, $ExtL30RP_{h,b}^p = ORPrcCeil$;
If $InitExtL30RP_{h,b}^p < ORPrcFlr$, $ExtL30RP_{h,b}^p = ORPrcFlr$;
Otherwise, $ExtL30RP_{h,b}^p = InitExtL30RP_{h,b}^p$; and
Set $P30RExtCong_{h,d}^p = ExtL30RP_{h,b}^p - P30RRef_h^p - P30RIntCong_{h,d}^p$

23.4.2.4 If the initial *locational marginal price* (*InitExtL*10 $NP_{h,b}^p$) is not within the *settlement* bounds (ORPrcFlr, ORPrcCeil), then the *day-ahead market calculation engine* shall modify the initial *locational marginal price*, the *locational marginal price* at the reference bus, and the external congestion component for *ten-minute operating reserve* as follows:

 $IntL10N = InitP10NRef_{h}^{p} + InitP10NIntCong_{h,d}^{p}$ If $InitP10NRef_{h}^{p} > ORPrcCeil$, $P10NRef_{h}^{p} = ORPrcCeil$;
If $InitP10NRef_{h}^{p} < ORPrcFlr$, $P10NRef_{h}^{p} = ORPrcFlr$,
Otherwise, $P10NRef_{h}^{p} = InitP10NRef_{h}^{p}$;
Set $P10NCong_{h,b}^{p} = L10NP_{h,b}^{p} - P10NRef_{h}^{p}$ If $InitExtL10NP_{h,b}^{p} > ORPrcCeil$, $ExtL10NP_{h,b}^{p} = ORPrcCeil$;
If $InitExtL10NP_{h,b}^{p} < ORPrcFlr$, $ExtL10NP_{h,b}^{p} = ORPrcFlr$;
Otherwise, $ExtL10NP_{h,b}^{p} = InitExtL10NP_{h,b}^{p}$; and
Set $P10NExtCong_{h,d}^{p} = ExtL10NP_{h,b}^{p} - P10NRef_{h}^{p} - P10NIntCong_{h,d}^{p}$

- 23.4.2.5 The *locational marginal price* calculated by the *day-ahead market* calculation engine shall be the same for all boundary entity resource buses at the same intertie zone. Reserve imports associated with the same boundary entity resource bus, but specified as occurring at a different intertie zone, subject to phase shifter operation, shall be modelled as flowing across independent paths. Pricing of these reserve imports shall utilize shadow prices associated with intertie limits and regional minimum and maximum operating reserve requirements applicable to the path associated to the relevant intertie zone.
- 23.4.2.6 When an *intertie zone* is out-of-service, the *intertie* limits for that *intertie zone* will be set to zero and all *boundary entity resources* for that *intertie zone* will receive a zero schedule for *energy and operating reserve* and the *intertie operating reserve* prices shall be set equal to the *locational marginal price* for the *reference bus* for that class of *operating reserve* plus the applicable shadow prices associated with regional minimum and maximum *operating reserve* requirements.

Pricing for Islanded Nodes

23.5.1 For *non-quick start resources* that are not connected to the *main island*, the *day-ahead market calculation engine* may use the following reconnection logic where

enabled by the *IESO* in the order set out below to calculate the *locational marginal prices* for *energy*:

- 23.5.1.1 Determine the connection paths over open switches that connect the *non-quick start resource* to the *main island*;
- 23.5.1.2 Determine the priority rating for each connection path identified based on a weighted sum of the base voltage over all open switches used by the reconnection path and the MW ratings of the newly connected branches; and
- 23.5.1.3 Select the reconnection path with the highest priority rating, breaking ties arbitrarily.
- For all (i) *resources* other than those specified in section 23.5.1 not connected to the *main island*; (ii) *non-quick start resources* where a price was not able to be determined in accordance with section 23.5.1; the *day-ahead market calculation engine* shall use the following logic in the order set out below to calculate *locational marginal prices*, using a node-level and *facility*-level substitution list determined by the *IESO*:
 - 23.5.2.1 Use the *locational marginal price* for *energy* at a node in the node-level substitution list where defined and enabled by the *IESO*, provided such node is connected to the *main island*:
 - 23.5.2.2 If no such nodes are identified, use the average *locational marginal price* for *energy* of all nodes at the same voltage level within the same *facility* that are connected to the *main island*;
 - 23.5.2.3 If no such nodes are identified, use the average *locational marginal price* for *energy* of all nodes within the same *facility* that are connected to the *main island*;
 - 23.5.2.4 If no such nodes are identified, use the average *locational marginal price* for *energy* of all nodes from another *facility* that is connected to the *main island*, as determined by the *facility*-level substitution list where defined and enabled by the *IESO*; and
 - 23.5.2.5 If a price is unable to be determined in accordance with sections 23.5.2.1 through 23.5.2.4, use the *locational marginal price* for *energy* for the *reference bus*.