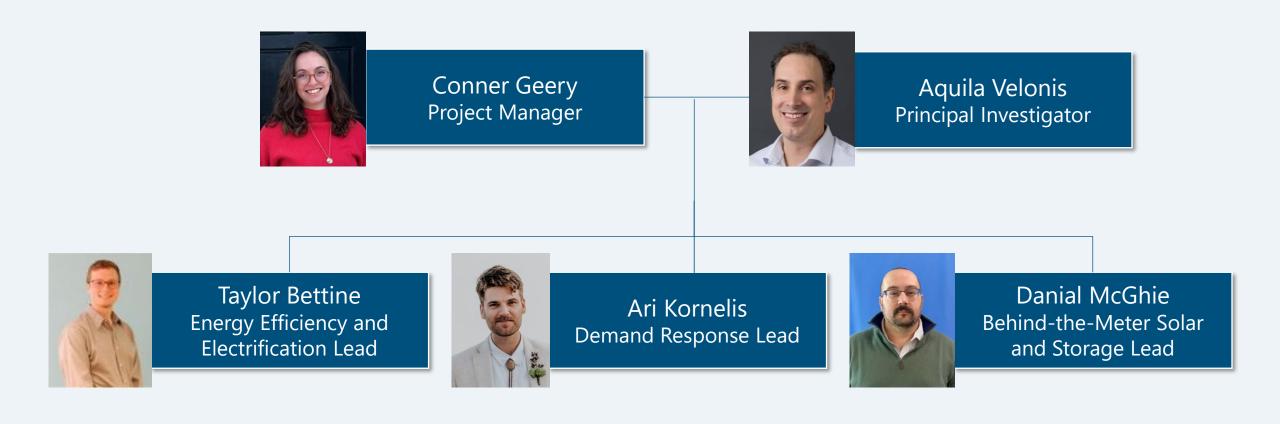


Welcome and Introduction

- Today's session will be recorded and available for viewing online
- The recording and presentation for this engagement can be found on the 2026 Provincial eDSM Achievable Potential Study engagement page

Participation

- For questions and comments click on the "raise hand" icon (hand symbol) at the top of the application window. This will indicate to the host you would like to speak.
- To unmute audio, click on the microphone icon at the top of the application window.
- Audio should be muted when not asking a question.

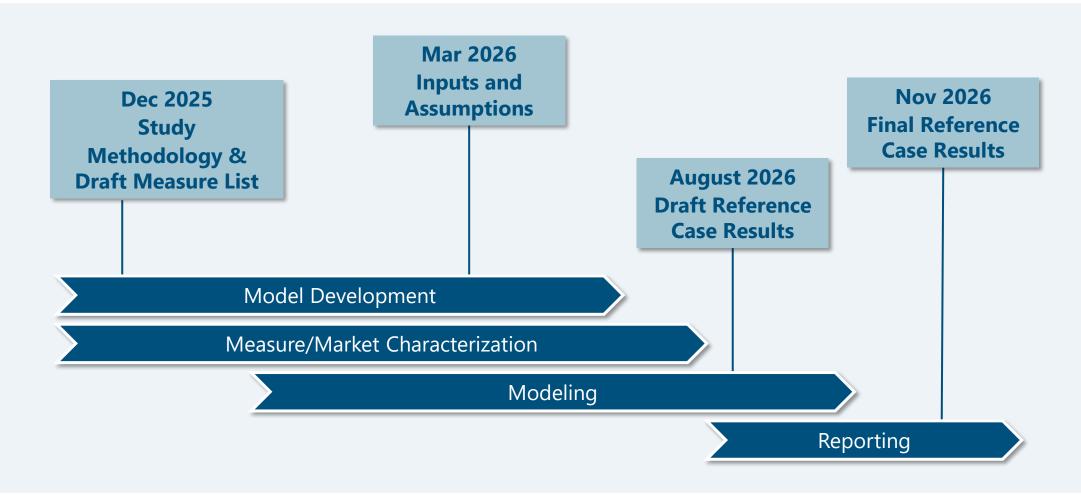

Territory Acknowledgement

The IESO acknowledges the land we are delivering today's webinar from is the traditional territory of many nations including the Mississaugas of the Credit, the Anishnawbe, the Chippewa, the Haudenosaunee and the Wendat peoples and is now home to many diverse First Nations, Inuit and Métis peoples. We also acknowledge that Toronto is covered by Treaty 13 with the Mississaugas of the Credit First Nation.

As we have attendees from across Ontario, the IESO would also like to acknowledge all of the traditional territories across the province, which includes those of the Algonquin, Anishnawbe, Cree, Oji-Cree, Huron-Wendat, Haudenosaunee and Métis peoples.

Cadmus Project Team

Agenda


- Timeline and Stakeholder Engagement
- Focus Areas and Reporting Metrics
- Methodology Overview
 - Energy Efficiency and Electrification
 - Demand Response
 - Behind-the-Meter Solar, Storage, and Load-Shift
- Appendices
 - Appendix A: IESO Electric Zones
 - Appendix B: Planning Study Priorities and Scope

Timeline and Stakeholder Engagement

Planning Study Timeline and Key Milestones

Stakeholder Presentation Schedule

Stakeholder Engagement Process

Stakeholder Meetings

- Four public webinar meetings
 - Study methodology
 - Input assumptions/scenario design
 - Draft results (base scenario)
 - Final results

Stakeholder Feedback

- Feedback forms posted by the IESO for each meeting
- IESO will summarize feedback received
- Cadmus and the IESO will work together to address and incorporate feedback

Focus Areas and Reporting Metrics

Planning Study Priorities and Scope

Study Priorities

Estimate the IESO potential impacts on electric loads and electric peak demand for specific customer segments and contextualize findings to inform decision-making

Study Scope

Estimates of Potential: Electric technical, economic, and achievable Energy efficiency, fuel-switching, demand response, and **DSM Potential Resources:** behind-the-meter resources (solar, storage, and load-shifting) **Applicable Sectors:** Residential, commercial, industrial including agriculture Overall system and IESO electrical zone level **Locational Level:** (1 Bruce, 2 East, 3 Essa, 4 Niagara, 5 Northeast, 6 Northwest, 7 Ottawa, 8 Southwest, 9 Toronto, and 10 West) **Study Horizon:** 2026 (base year) to 2050 Reference Scenario (Ref), High Demand Scenario (HDS) and **Scenarios:** Low Demand Scenario (LDS), and additional scenario (TBD) **Modeling Type:** Hybrid bottom-up / top-down end-use model

Primary Tasks

1

Measure List / Data Gathering

- Develop a comprehensive measure list for each resource
- Gather measure and market data
- Data request

2

Technical Potential

- Market characterization by sector, segment, vintage, end-use, and zone
- Measure characterization of impacts, costs, incentives, lifetime, and technical constraints

(3)

Economic Potential

- Follow the IESO cost-effectiveness criteria
- Use avoided energy and avoided capacity

4

Achievable Potential

- Assess DSM adoption by modeling customer decisions
- Use customer-facing economics with diffusion of innovation theory

5

Scenario Analysis

 Conduct load scenario analysis to determine levels of potential from low and high IESO system loads

6

Reporting / Findings

- Prepare one report for energy efficiency, beneficial electrification, and behind-the-meter resources
- Prepare one report for demand response

Energy Efficiency and Electrification

Energy Efficiency and Electrification Methodology Overview

Purpose: Produce estimates of electric technical, economic, and achievable energy efficiency and fuel-switching potential

Sectors: Residential, commercial, and industrial

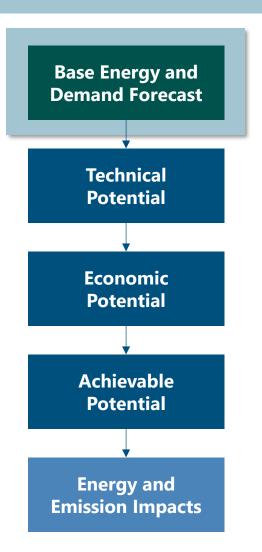
Period: 2026 base year with potential 2027 to 2050

Location: For each of the 10 IESO electrical zones as well as for the overall system

Customer Research

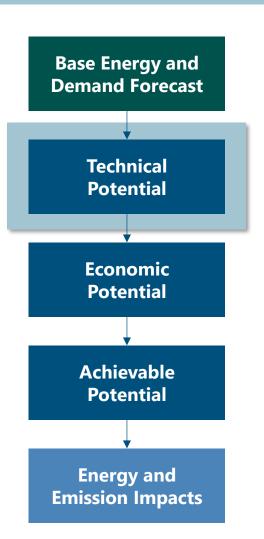
Customer propensity to adopt, adoption rates

Load End-Use Adoption Forecast Model (LEAF) Calibration Base year non-8760 inputs **Base Energy and Base year Demand Forecast** 8760 inputs **Historic Market Data** Segmentation, sales, population/sqft, peak definition, **Weather Data** program accomplishments Scale load shapes **Technical** to Ontario climate **Potential Customer Growth Forecast** Accounts/sqft, growth by year **Load Shapes** By end use and building type **End-Use Intensity (EUI) and Economic End-Use Consumption (EUC) Potential** By building type and vintage **Equipment Characterization** Expected lifetime, savings, **Achievable** efficiency shares, codes and **Scenarios Potential** standards, fuel shares, saturations **Cost-Effectiveness Inputs** LEAF Model Avoided cost, discount rates, line loss, measure costs Input **Energy and Emission Impacts** Calculation

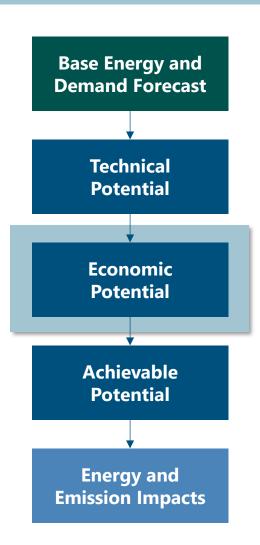

Calibration or Scenario

CADMUS

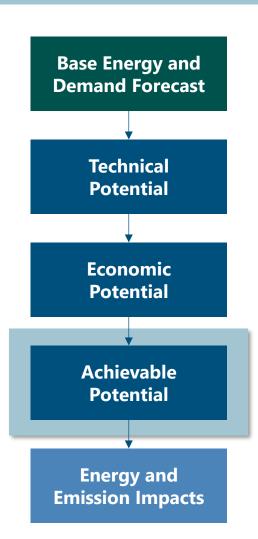
Output


Base Year Energy and Demand Forecast

- Based on the IESO's Long Term Demand Forecast (LTDF) from LEAF
- Built up from customer accounts, end-use saturations, end-use fuel shares, end-use equipment efficiency shares, and end-use consumption
- Includes new construction and existing construction demolition/major renovation rates by building type
- Includes adjustments from climate forecast
- 8760 level results, built up from equipment load shapes


Technical Potential

- Represents the maximum energy impact from study measures (technically feasible), regardless of economics or customer choice
- Built up from equipment load shape
- Estimates energy efficiency and electrification impacts separately due to downstream / interactive effects
- Develops database of measure-level impacts
- Incorporates equipment turnover assumptions, technical feasibility, and baseline code assumptions
- Accounts for interactions among measures—a treatment called measure stacking—to avoid overestimating total savings


Economic Potential

- Subset of technical potential, representing measures in technical potential that pass the IESO cost-effectiveness test
- Competing options weighed by customer decision-makers, the option with the highest energy impact that passed the cost-effectiveness screen is installed, regardless of other barriers
- The difference between technical and economic potential is the number and type of measure units assumed to be installed
- Data includes (but are not limited to) avoided energy, capacity, and transmission costs; discount rate; and forecasted electricity rates

Achievable Potential

- Subset of economic potential that accounts for real-world market barriers to adoption of efficiency measures
 - Simulates customer decisions based on customer economics and adoption attributes (customer, technology, and market)
- Competing options weighed by the proportional measure market share
 - Allows for most mature and economically appealing options to claim the largest market shares without resorting to a simplistic winner-takes-all assumption
- Does not consider program / portfolio design or delivery mechanisms (this study does not estimate program potential)

Energy Consumer Segments, Modeling Considerations, and Impacts Measured

Customer Segmentation

Building Segments

Residential: Single-Family Attached, Single-Family Detached, Multifamily, Multifamily 5+ stories, Other

Commercial: Large Office, Office, Large Retail, Retail, Schools, Hospitals, etc.

Industrial: Primary Metals, Paper, Wood Products, etc.

Building Vintages

New, Existing

Residential Income Strata

Standard, Income Qualified

Residential Ownership Type

Owner, Renter

Geography

10 IESO Zones

Modeling Considerations

Building energy codes and appliance standards

Climate impacts on weather-sensitive measures

Non-energy impacts (applicable)

Underserved communities and equity

Customer choice adoption

Energy efficiency and electrification interactions

Reporting Metrics / Measures

Electric Energy Efficiency

MWh, MW Winter / Summer Peak, Economic Screen, Units

Electrification

MWh, MW Winter / Summer Peak (increase load), Economic Screen, Units

Data Sources and Inputs

Data hierarchy

- IESO data (forecast, MAL, surveys, and other)
- Utility data (if available)
- Ontario technical reference manuals (TRMs)
- EIA data
- Secondary sources

Base Forecast Data Sources

Data	Primary Source	Secondary Source
Baseline/Forecasted Sales and Customers	 IESO's Long Term Demand Forecast (LTDF) Stokes Economics forecasts IESO transmission-connected customer data Q2 Reliability Outlook forecast of 2026 	
Percentage of Sales by Building Type	2025 Residential End-Use SurveyStokes Economics forecastsIESO industrial customer database	Natural Resources Canada's Office of Energy Efficiency
End-Use Energy Consumption	 2025 Residential End-Use Survey (REUS) 2022 Commercial End-Use Survey (CEUS) IESO's Measure Assumptions List (MAL) Ontario Energy Board TRMs Survey of Commercial and Institutional Energy Use (SCIEU) U.S. Energy Information Administration's (EIA) Residential Energy Consumption Survey (RECS) EIA's Commercial Building Energy Consumption Survey (CBECS) EIA's Manufacturing Energy Consumption Survey (MECS) EnerGuide associated with Canada's energy-efficiency regulations 	 databases Canada Mortgage and Housing Corporation (CMHC) statistics Natural Resources Canada's Survey of Household Energy Use and SmartDriver and Fuel Management guide ENERGY STAR unit shipment reports U.S. DOE data and reports Other TRMs from U.S. states
Saturations, Fuel, and Efficiency Shares	REUS, CEUS, SCIEU, RECS, CBECS, MECS	CUDINIO.

Data Sources and Inputs

Data hierarchy

- IESO data (MAL, evaluations, program data, research, and other)
- Utility data (if available)
- Ontario TRMs
- Secondary sources

Measure Data Sources

Data	Primary Source	Secondary Source	
Energy Savings	 IESO's MAL Ontario Energy Board TRMs Ontario evaluation reports IESO's program data ENERGY STAR Canada 		
Equipment and Labor Costs	 IESO's MAL Ontario Energy Board TRMs ENERGY STAR Canada RS Means cost database Cadmus research 	 Prior Ontario potential study Incremental cost studies ENERGY STAR shipments reports 	
Measure Life	 IESO's MAL Ontario Energy Board TRMs ENERGY STAR Canada Lifetime studies Cadmus research 	 U.S. DOE data and reports Other TRMs from U.S. states 	
Measure Applicability (technical feasibility and percentage completed)	 REUS, CEUS, SCIEU, RECS, CBECS, MECS Program evaluations / program data 		

Draft Measure List

Energy Efficiency

Electrification

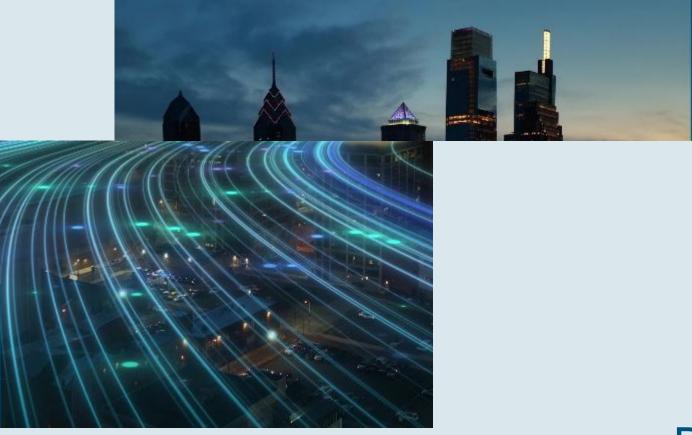
Equipment + Retrofit Measures

Sources:

- IESO's Measure
 Assumptions List (MAL)
- IESO and Ontario
 Energy Board Prior
 APSs / TRMs
- IESO model electrification measures
- Cadmus research

Measures list contains:

- ~560 measure permutations by
 - Sector
 - End-Use
 - Measure Name/Efficiency Description
 - Baseline Description
 - Electrification Flag or List
 - Emerging Technologies Flag



Feedback is requested on the spreadsheet via the IESO feedback form

Please review your preferred area by filtering to the desired sector and end-use

Please have responses by January 9th

Demand Response

Demand Response Methodology Overview

Purpose: Produce estimates of

electric demand

response technical,

economic, and

achievable potential

Sectors: Residential, commercial,

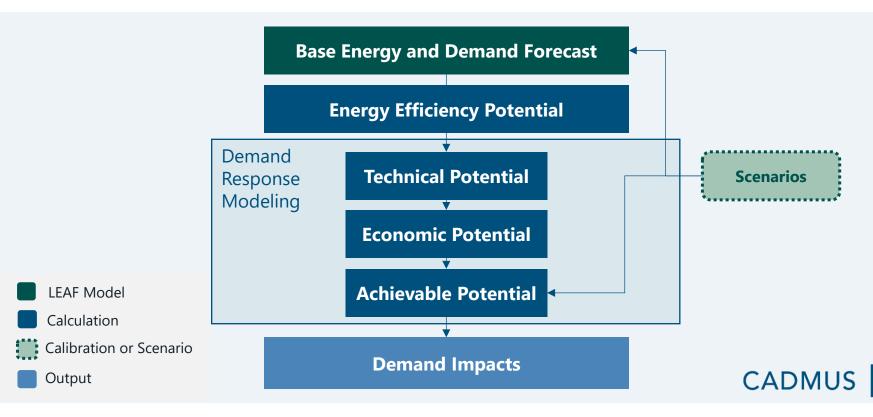
industrial, and agriculture

Period: 2026 base year with

potential 2027 to 2050

Location: For each of the 10 IESO

electrical zones as well as


for the overall system

Reporting: Stand-alone report from

energy efficiency

General Demand Response Product Categories by Sector

Sector	Product Demand Response Category		
Direct Load Control (DLC)			
Residential, Commercial	Electric Vehicle DLC		
Residential	Water Heat DLC		
Residential	Pool Pump DLC		
Residential, Commercial	Heating and Cooling DLC		
Commercial, Industrial	Demand Curtailment		
Agriculture	Irrigation Demand Response		

Demand Response Technical Potential

Technical potential assumes 100% participation and represents a theoretical limit for unconstrained potential

Methodology

Each demand response opportunity will be characterized with the following steps:

- Reference load and peak coincidence
- Product design and impact
- Eligible market size
- Product competition

Demand Response Economic Potential

of technical potential is a subset of technical potential that represents potential from costeffective measure applications

Methodology

Four key factors affect the cost-effectiveness of demand response programs:

- The expected load reduction (in kW) provided by each participant
- The avoided capacity, transmission, and distribution costs
- Key financial assumptions such as discount rate, T&D line loss, and analysis period
- The fixed and variable costs of each program

The direct program costs of a demand response option can include setup costs, program operation and maintenance costs, equipment cost, marketing cost, and incentives

Demand Response Achievable Potential

Achievable potential is a subset of economic potential that accounts for real-world market barriers to the adoption of demand response opportunities

Methodology

The achievable potential will account for three assumptions:

- The maximum rate of adoption is the market maximum for a given price (incentive)
- The adoption ramp rate is the expected annual rate of incremental product enrollment to reach program maturity (also known as the maximum rate of adoption)
- Event participation represents the percentage of program customers who are expected to participate in an individual event

Data Sources and Inputs

Data hierarchy

- IESO data (evaluations, program data, research, and other)
- Utility data (if available)
- Advisory group input
- Cadmus evaluation and research
- Secondary sources

Data	Primary Source(s)	Secondary Source	
Peak Definition (may vary by year)	IESO Annual Demand Forecast (LEAF model output)		
Demand Response Impact Characterization	 Base end-use load shapes from IESO forecasts IESO/Ontario evaluations Cadmus evaluations 		
Market Size	IESO/Ontario evaluationsCadmus' prior research		
Demand Response Competition Factors	Advisory group inputCadmus' prior research	 Benchmarking data from demand response 	
Economic Inputs	IESO data	programs in North AmericaNon-regional evaluations	
Demand Response Program Costs / Incentives	IESO/Ontario program dataCadmus' prior research	 Peak Load Management Alliance presentations and research 	
Maximum Rate of Adoption	Advisory group inputCadmus' prior research		
Annual Ramp Rate	Advisory group inputCadmus' prior research		
Event Participation	 Program evaluations/program data Advisory group input Cadmus' prior research 		

Draft Measure List

HVAC DLC

Water Heat DLC

Pool Pump DLC

EV DLC

Curtailment

Irrigation

Feedback is requested on the spreadsheet via the IESO feedback form

Sector	Product Name	Product Description
Residential	Heating and Cooling	Uses existing Wi-Fi-enabled thermostats to automatically change the setpoint temperature to preheat/precool and reduce demand during peak events.
Commercial	DLC	
Residential	Water Heat DLC	Wi-Fi integration or a load switch installed on an electric resistance water heater to reduce water heating during summer and winter demand response event periods.
Residential	Pool Pump DLC	Wi-Fi integration or a load switch installed on a pool pump to reduce demand during summer demand response event periods.
Residential	Electric Vehicle DLC	Centralized utility intervention to shift EV charging to off-peak hours through Wi-Fi-enabled charger controls and/or vehicle telematics. This is an event-based resource involving Level 2 chargers.
Commercial	(V1G)	Centralized utility intervention to shift EV charging to off-peak hours through Wi-Fi-enabled charger controls and/or vehicle telematics. This is an event-based resource, including Level 2 and direct current fast chargers (DCFC).
Commercial	Demand Curtailment	Provides incentives for custom load curtailment strategies and event- based technology agnostic energy demand reduction. Customers
Industrial	(contract)	nominate a certain amount of load (lighting, refrigeration, HVAC, process loads, etc.) to be curtailed during events. Includes both manual and automated voluntary demand curtailment.
Agriculture	Irrigation Management	Remote curtailment of agricultural irrigation pumps during summer season peak events.

Behind-the-Meter Solar, Storage, and Load-Shift

Behind-the-Meter Solar and Storage Methodology Overview

Purpose: Produce hourly estimates

of technical, economic, and

achievable potential for

behind-the-meter solar

and storage, rooftop solar

with battery, battery

without rooftop solar, and

thermal storage

Sectors: Residential, commercial,

and industrial

Period: 2026 base year with

potential 2027 to 2050

Location: For each of the 10 IESO

electrical zone as well as

for the overall system

Primary Tasks	Solar	Battery Storage	Thermal Storage
Segment building stock	✓	✓	✓
Apply technical resource characteristics to calculate total available roof area and system capacities	✓		
Develop battery size bins by sector		✓	
Determine adjustable load criteria (peak hours, 2- to 4-hour events)		✓	
Apply non-adjustable load shifts to applicable existing building end-uses (consistent with LEAF model)			✓
Calculate cost-effectiveness	✓	✓	✓
Forecast market adoption based on Bass diffusion and project economics (same as LEAF model)	✓	✓	✓
Estimate technical, economic, and achievable potential	✓	✓	✓
Develop hourly results and hourly load shifts	✓	✓	✓
Reporting	Part of e	nergy efficien	cy report

Data Sources and Inputs

Data hierarchy

- IESO data (evaluations, program data, research, and other)
- Utility data (if available)
- Advisory group input
- Cadmus evaluation and research
- Secondary sources

Solar Data	Primary Source	Secondary Source		
Energy Savings	DSM MAL	Benchmarking data from		
Equipment and Labor Costs	• IESO 2024 APO	programs in North America • NREL		
Measure Life	DSM MAL	Lazard levelized cost analysisIESO Pilot Data		
Measure Applicability	 DSM MAL; NREL; Cadmus targeted research of rooftop applicability 			
Battery Data	Primary Source	Secondary Source		
Energy Savings	DSM MAL; IESO Pilot Data; Cadmus Analysis	Benchmarking data from		
Equipment and Labor Costs	DSM MAL; IESO APO; IESO Pilot Data	programs in North AmericaNREL		
Measure Life	• DSM MAL;	Lazard levelized cost analysisIESO pilot programs analysis		
Measure Applicability	 DSM MAL; Ontario Electrical Safety Code; Cadmus Research 	IESO Pilot Data		
Load Shift Data	Primary Source	Secondary Source		
Energy Savings	 DSM MAL; IESO Pilot Data; Cadmus Analysis 			
Equipment and Labor Costs	DSM MAL; IESO APO; IESO Pilot Data	Utility studies and forecasts		
Measure Life	DSM MAL; EE IESO data; Cadmus Research	NRELIESO Pilot programs		
Measure Applicability	 DSM MAL; IESO Annual Demand Forecast (LEAF model output); Cadmus Research 			

Draft Measure List

Solar

Solar + Battery Storage

Battery Storage

Feedback is requested on the spreadsheet via the IESO feedback form

Sector	Туре	Product/ Measure Name	Planned kWh/kW Capacity Ranges	
Residential	Solar No Battery	Rooftop solar	Solar	5-30 kW DC
		Rooftop solar with traditional battery storage	Solar	5-30 kW DC
	Solar With Battery		Battery	Power Capacity: 5-11.5kW Battery Storage Capacity: 5-30kWh Hours of Storage: 1-4 hours
	Battery No Solar	Traditional battery storage	Battery	Power Capacity: 5-11.5kW Battery Storage Capacity: 5-30kWh Hours of Storage: 1-4 hours
	Solar No Battery	Rooftop solar	Solar	10 - 2400 kW DC
		Day (to a solar	Solar	10 - 2400kW DC
Commercial	Solar With Battery	Rooftop solar y with traditional battery storage Ba		Power capacity: 10-300kW Battery Storage Capacity: 10 - 2400 kWh; Hours of storage range = 1 - 4
	Battery No Solar	Traditional battery storage	Battery	Power capacity: 10-300kW Battery Storage Capacity: 10 - 2400 kWh; Hours of storage range = 1 - 4
	Solar No Battery	Rooftop solar	Solar	300 - 2400 kW DC
		Do often color		300 - 2400 kW DC
Industrial	Solar With Battery with traditional battery storage		Battery	Power capacity: 300kW Battery Storage: 300 - 2400 kWh; Hours range = 1-4
	Battery No Solar	Traditional battery storage	Battery	Power capacity: 300kW Battery Storage: 300 - 2400 kWh; Hours range = 1-4 CADMUS

Draft Measure List

Thermal Storage

- Residential Applications: Low Temperature (<100C)
- Commercial Applications: Low Temperature (<200C)
- Industrial Applications:

 Low, Medium, and High
 Heat Temperatures:
 <500C and >500C

Sector	Туре	Product/ Measure Name	Technology Type
Residential	Thermal	Space heating	Latent/Phase Change Thermal (PCM) – DHW & Space Heating
	Thermal	Space heating	Sensible - Liquid Based (water-based systems)
Commercial	mermai	or cooling	Latent/PCM – DHW and Space Heating
Commercial	Thermal	Process Cooling/Refriger ation	Sensible - Liquid Based (water-based systems)
	Space heating		Sensible - Liquid Based (water-based systems)
	Thermal	or cooling	Latent/PCM
Industrial		Process heating/cooling	Sensible - Solid State (brick/concrete/silica sand) - ETS
	Thermal		Sensible - Liquid State (molten salts)
	Helliai		Thermochemical - (Magnesium/Magnesium oxide)
			Phase Change/Latent Materials - (Miscibility Gap Alloy MGA)

Q & A

Conner Geery

Senior Specialist | Performance & Design Conner.Geery@cadmusgroup.com

Ari Kornelis

Senior Associate | Performance & Design Ari.Kornelis@cadmusgroup.com

Aquila Velonis

Principal | Planning & Assessment Aquila. Velonis@cadmusgroup.com

Danial McGhie

Senior Analyst | Customer Solutions Danial.Mcghie@cadmusgroup.com

Seeking Feedback 1/2

Topic: Data Inputs and Sources

- 1. Do you see any gaps in identified data inputs or additional sources we should consider?
- 2. Do the assumptions behind the measures seem reasonable and aligned with real-world conditions?
- 3. Do you suggest adding/removing any measures?

Seeking Feedback 2/2

Topic: Methodology

4. Are there any specific comments or suggestions for the methodology?

Topic: Stakeholder Engagement

- 5. Are there any topic areas of particular interest (inputs, assumptions or methods) to stakeholders for engagement?
- 6. Would DR and DER developers be interested in a focused meeting to discuss their insights in more detail?

For More Information

- The recording, presentation, and feedback form for this engagement can be found on the
 2026 Provincial eDSM Achievable Potential Study page
- If you have any questions on the information shared today, please contact engagement@ieso.ca

Thank You

ieso.ca

1.888.448.7777

IESOCustomerRelations@ieso.ca

engagement@ieso.ca

@IESO Tweets

facebook.com/OntarioIESO

linkedin.com/company/IESO

Appendix

Appendix A: Planning Study Priorities and Scope

Appendix A: Planning Study Priorities and Scope

