

Evolving Energy System Flexibility Through Exergoeconomic Optimization

2017 IESO Stakeholder Summit Monday, June 12, 2017, Toronto

Rupp Carriveau

Director, Environmental Energy Institute
Director, Turbulence and Energy Lab

Ed Lumley Centre for Engineering Innovation Associate Professor, University of Windsor

Energy System Exergoeconomic Optimization

What questions are we trying to answer?

GRID/MARKET

www.candianmanufacturing.com

- What type of services (dynamic performance) can we expect from novel storage assets?
- What market mechanisms will best serve both the system and market participants?

Environmental Energy Institute

ENERGY STORAGE ASSET

www.pbsimg.com

- What type of services (performance) can we provide the market?
- What are our dynamic efficiencies through each possible operating mode?
- Based on our dynamic efficiencies and market opportunities – how should we run to maximize profit?

Energy System Exergoeconomic Optimization

How can we try to answer these questions?

SIMPLIFIED UNDERWATER COMPRESSED AIR ENERGY STORAGE FACILITY SCHEMATIC

- EXERGO: A transient advanced exergy analysis considers not just the 1st law efficiencies of individual components, but also the capacity of that component, based on its role in a larger system, to see potential efficiency improvements (can be used at facility design stage as well).
- ECONOMIC: Once a dynamic performance map is created it can be coupled with a market analysis to reveal the optimum operation mode for maximum revenue generation.

Environmental Energy Institute

www.environmentalenergyinstitute.com